Knowledge Editing

Learning to Edit: Aligning LLMs with Knowledge Editing Lifelong Knowledge Editing for LLMs with Retrieval-Augmented Continuous Prompt Learning

주간 세미나 2025.01.09

Knowledge Editing (지식 편집)이란

[정의]

Updating specific knowledge stored in a pre-trained language model

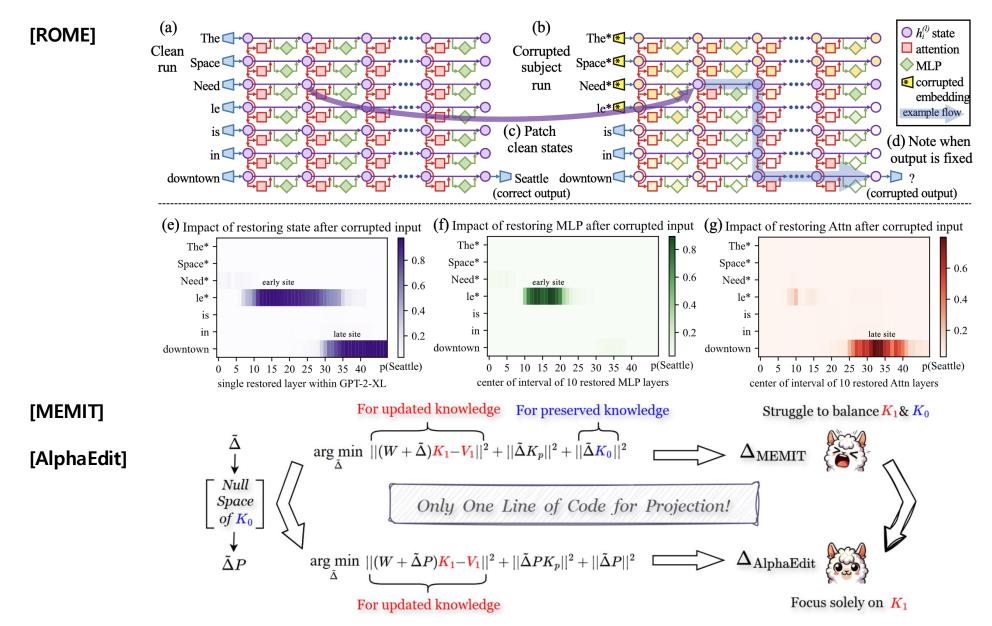
- (1) Preserving the overall structure and learned knowledge of the existing model
- (2) Selectively changing specific information without broadly altering the model's behavior
- (3) Efficiently and locally updating the model's knowledge to address new facts or correct errors

[목적]

While retraining or finetuning can edit a model's predictions, doing this frequently is often too computationally expensive. LLaMA, for instance, was trained for 21 days on 2,048 A100 GPUs, costing over \$2.4M and emitting over 1,000 tons of CO2. – **GRACE 2023**

To address this need, model editing is an emerging area of research that aims to enable fast, data-efficient updates to a pre-trained base model's behavior for only a small region of the domain, without damaging model performance on other inputs of interest – **SERAC 2022**

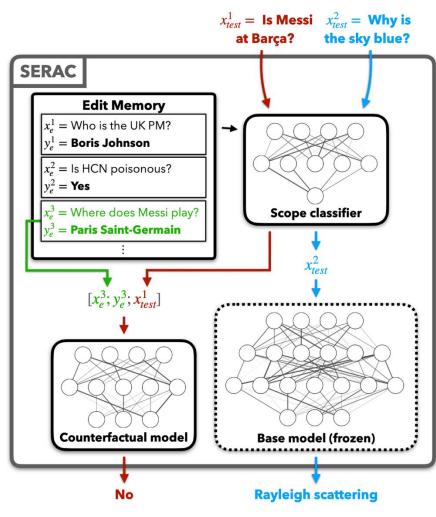
Locate-then-Edit



3

Memory-based learning

[SERAC]



[GRACE]

Algorithm 1: Update Codebook at layer *l*. Input: $C = \{(\mathbb{K}_i, \mathbb{V}_i, \epsilon_i)\}_{i=0}^{C-1}$, codebook **Input:** $f(\cdot)$, model **Input:** y_t , desired label **Input:** x_t , edit input for which $f(x_t) \neq y_t$ **Input:** ϵ_{init} , initial ϵ **Input:** $d(\cdot)$, distance function **Output:** C, updated codebook $C = \|\mathcal{C}\|$ $\hat{y}, h^{l-1} = f^L(x_t), f^{l-1}(x_t)$ $\mathbf{d}_{\min}, i = \min_i(d(h^{l-1}, \mathbb{K}_i))$ If $d_{\min} > \epsilon_i + \epsilon_{\min}$ or C = 0: # h^{l-1} far from existing entries or empty C $v_{\text{new}} = \text{finetune on } P_f(y|v_{\text{init}})$ $\mathcal{C}_C = (h^{l-1}, v_{\text{new}}, \epsilon_{\text{init}}) \# Add entry$ Else: # h^{l-1} near existing entries If $f^L(k_i) = y$: # Same label \rightarrow Expand $\mathcal{C}_i := (k_i, v_i, \epsilon_i + \epsilon_{\text{init}})$ Else: # Different label \rightarrow Split $C_i = (k_i, v_i, d_{\min}/2)$ # Update entry i $v_{\text{new}} = \text{finetune on } P_f(y|v_{\text{init}})$ $\mathcal{C}_C = (h^{l-1}, v_{\text{new}}, d_{\min}/2) \# Add entry$ return: C

Knowledge Editing (지식 편집)이란

Task Formation

The objective of knowledge editing is to efficiently adjust the behavior of an initial base LLM f_{θ} , where θ represents the model's parameters, in response to specific **edit descriptors** $\{(x_i^*, y_i^*)\}_{i \in [1,N]}$

 x_i^* : edit input trigger, query, question, key...

 y_i^* : edit target, target answer, desired label, value...

N signifies the total number of edit descriptors.

The efficacy of knowledge editing is evaluated among several dimensions: (1) **Reliability (Edit Success)**: measures the average accuracy of the post-edit model f_{θ}^*

$$\mathbb{E}_{(x_i^*, y_i^*)} \mathbb{1}\{ \arg\max_y f_\theta^*(y | x_i^*) = y_i^* \}$$

(2) **Portability**: evaluates how well updated knowledge transfers to related queries, enhancing the model's utility in varied contexts

(3) **Locality**: assesses the precision of edits, ensuring modifications are confined to targeted areas without affecting unrelated knowledge

(4) **Fluency:** quantifies the linguistic quality of the model's output post-edit, focusing on coherence and diversity to avoid repetitive pattern

1. Learning to Edit: Aligning LLMs with Knowledge Editing

Yuxin Jiang^{1,2}*, Yufei Wang³, Chuhan Wu³, Wanjun Zhong³, Xingshan Zeng³, Jiahui Gao³, Liangyou Li³, Xin Jiang³, Lifeng Shang³, Ruiming Tang³, Qun Liu³, Wei Wang^{1,2} The Hong Kong University of Science and Technology (Guangzhou)¹, The Hong Kong University of Science and Technology², Huawei Noah's Ark Lab³ yjiangcm@connect.ust.hk, wang.yufei1@huawei.com, weiwcs@ust.hk

ACL 2024

Introduction

Previous Knowledge Editing Approaches..

(1) Rely on **auxiliary modules** or models to either predict the **LLM's weight adjustments** → Meta-learning 기반의 방식들의 한계

(2) Function as **scope classifiers** for query response applicability → Memory 기반의 SERAC의 한계

(3) Localization results from **Causal Tracing are statistically uncorrelated** with the success of an edit injecting a new fact into MLP weights.

→ Locate-then-edit 기반의 한계

"Teach a man to fish, and you feed him for a lifetime"

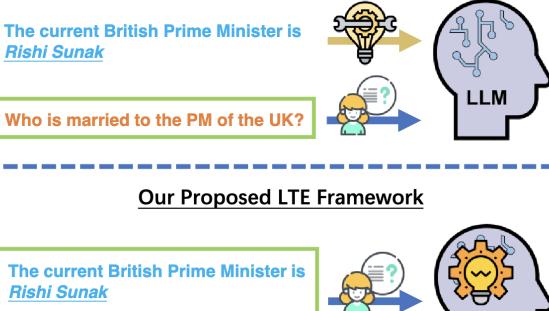
→ To elicit LLMs' capabilities of following knowledge editing instructions, thereby empowering them to <u>effectively leverage the updated knowledge to answer the queries</u>

Introduction

Learning To Edit (LTE)

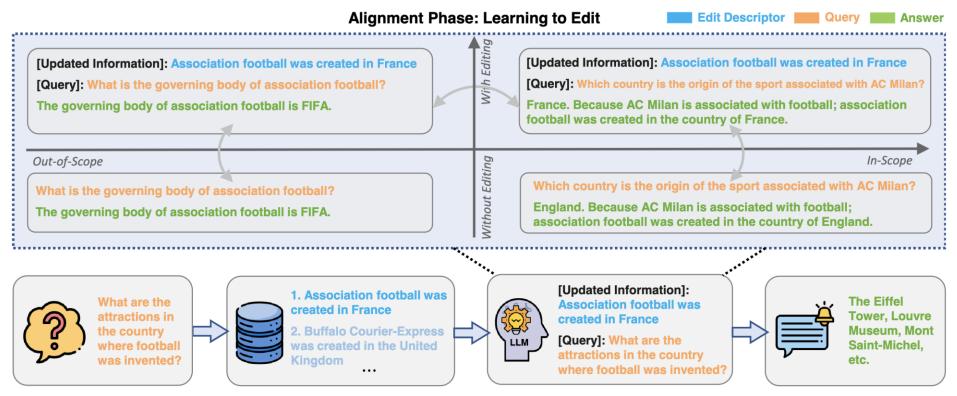
To elicit LLMs' capabilities of following knowledge editing instructions, thereby empowering them to effectively leverage the updated knowledge to answer the queries.

Previous Knowledge Editing Methods



Who is married to the PM of the UK?

Learning To Edit (LTE)

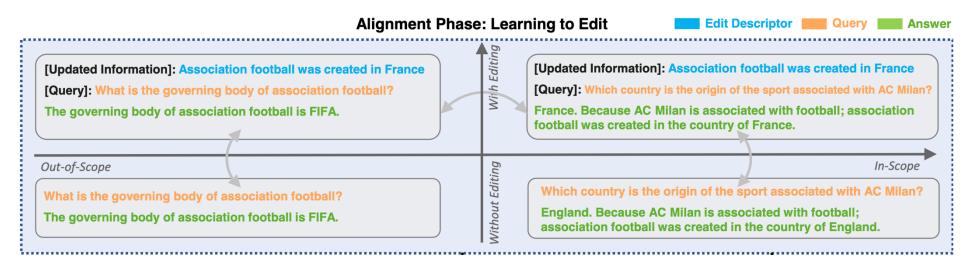


Inference Phase: On-the-fly Edit

Learning to Edit (LTE) framework to align LLMs with ever-changing, complicated, and diverse knowledge editing requests in real-time

(i) Alignment Phase: Knowledge Editing Prompt로 지식 편집이 가능하도록 학습하는 과정
 (ii) Inference Phase: 저장된 메모리 → 업데이트할 관련 지식 + Query로 Knowledge Editing

Learning To Edit (LTE)



(i) Alignment Phase: Learning to Edit

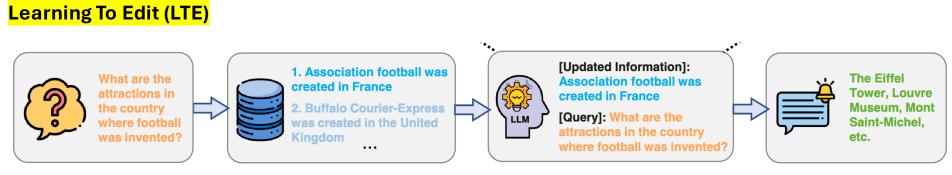
"[Updated Information]{edit descriptor}\n[Query] {query}"

An **optimal knowledge editing method** must seamlessly **integrate new knowledge into the relevant content** within its edit scope, while **ensuring** the accuracy and integrity of information **outside this domain**

(1) In-Scope Capability: It also covers subject aliasing, ensuring the editing of one subject should not vary from its expression

(2) Out-Scope Capability: To maintain the integrity of unrelated attributes of the subject, ensuring no unintended alteration

(3) Linguistic Capability: Editing should not hinder the model's proficiency in unrelated areas



Inference Phase: On-the-fly Edit

(ii) Inference Phase On-the-fly Edit

RAG-based mechanisms support real-time knowledge editing, retrieving the top k (k=3) relevant updated knowledge from within stored memory (embed all the edit descriptors and create a vector memory) and incorporating it into model responses.

threefold strategy

규칙 1. Firstly, in 50% of cases, we directly use the exact edit descriptor

규칙 2. Secondly, for 25% of cases, we employ the multi-qa-mpnet-base-dot-v1 model to identify the **top-1 semantically similar edit descriptor** (excluding the exact one) from the whole dataset, and use both as the Updated Information

규칙 3. Lastly, for the remaining 25%, we retrieve the **top 2 semantically similar descriptors**, excluding the exact one, using all three as the Updated Information

<mark>Main Results</mark>

Model	Dataset	Metric	SERAC	ICE	MEND	ROME	MEMIT	FT-L	FT	LTE	LTE-LoRA
		Edit Succ.	<u>99.67</u>	66.01	96.74	96.57	83.07	54.65	36.88	99.91	99.91
	ZsRE	Portability	56.48	63.94	60.41	52.20	51.43	45.02	8.72	<u>78.98</u>	79.63
	LIKE	Locality	30.23	23.14	92.79	27.14	25.46	71.12	0.31	<u>71.78</u>	67.99
		Fluency	410.89	541.14	524.33	<u>570.47</u>	559.72	474.18	471.29	583.70	544.52
	1	Edit Succ.	99.69	95.53	93.66	95.05	94.29	66.27	95.64	99.8 7	<u>99.76</u>
7B	WikiBio	Locality	69.79	47.90	69.51	46.96	51.56	60.14	13.38	80.27	72.31
at-		Fluency	606.95	632.92	609.39	<u>617.25</u>	616.65	604.00	589.22	614.26	611.94
LLaMA2-Chat-7B	1	Edit Succ.	98.68	60.74	76.88	85.08	85.32	71.18	31.24	99.99	<u>99.97</u>
A2	Recent	Portability	63.52	36.93	50.11	37.45	37.94	48.71	15.91	91.51	<u>81.87</u>
M	Recent	Locality	100.00	33.34	<u>92.87</u>	66.20	64.78	63.70	3.65	85.67	82.72
LL.		Fluency	553.19	531.01	<u>586.34</u>	574.28	566.66	549.35	428.67	586.76	570.64
-		Edit Succ.	<u>99.99</u>	69.83	78.82	83.21	83.41	51.12	26.78	100.00	99.97
	Counterfact	Portability	76.07	45.32	57.53	38.69	40.09	39.07	16.94	89.69	85.74
	Counterract	Locality	98.96	32.38	<u>94.16</u>	65.40	63.68	62.51	0.29	84.76	85.11
		Fluency	549.91	547.22	<u>588.94</u>	578.84	568.58	544.80	483.71	589.69	574.14
	Average	Edit Succ.	99.51	73.03	86.53	89.98	86.52	60.81	47.64	99.94	<u>99.90</u>
		Portability	65.36	48.73	56.02	42.78	43.15	44.27	13.86	86.73	82.41
		Locality	74.75	34.19	87.33	51.43	51.37	64.37	4.41	<u>80.62</u>	77.03
		Fluency	530.24	563.07	577.25	<u>585.21</u>	577.90	543.08	493.22	593.60	575.31
	ZsRE	Edit Succ.	98.43	70.29	99.40	99.90	97.25	37.81	25.33	99.72	99.59
		Portability	56.69	67.52	59.98	46.76	44.31	41.85	7.70	82.92	80.16
		Locality	41.28	73.45	80.83	48.90	60.26	87.70	3.29	80.99	78.28
		Fluency	495.12	556.86	544.07	562.88	<u>578.73</u>	557.86	538.10	580.01	543.35
		Edit Succ.	99.39	94.60	93.38	98.79	96.10	60.19	34.63	99.80	99.75
	WikiBio	Locality	71.50	58.15	65.47	41.78	65.65	80.41	22.45	79.63	80.34
-718		Fluency	598.11	614.22	610.92	604.81	623.49	595.56	572.59	634.73	620.05
Qwen-Chat-7B		Edit Succ.	99.58	83.86	82.39	99.67	98.96	60.07	29.74	99.73	<u>99.68</u>
- -	Recent	Portability	67,22	58.24	57.92	50.84	49.38	42.02	14.33	89.73	87.40
wei	Ketent	Locality	100.00	61.83	89.11	51.78	60.72	84.83	4.27	<u>89.25</u>	83.77
ð		Fluency	561.32	559.46	<u>610.72</u>	600.70	600.39	598.32	456.99	615.59	587.90
		Edit Succ.	99.06	80.28	88.04	99.44	95.05	24.55	15.42	99.28	<u>99.35</u>
	Counterfact	Portability	79.28	53.80	52.99	40.63	34.50	20.14	11.38	86.79	<u>85.33</u>
	Counterract	Locality	<u>92.70</u>	63.86	91.05	39.22	50.14	92.74	30.04	86.87	85.20
		Fluency	568.05	559.46	<u>619.87</u>	603.21	604.47	608.47	563.70	622.91	593.51
		Edit Succ.	99.12	82.26	90.80	99.45	96.84	45.66	26.28	99.63	<u>99.59</u>
	Average	Portability	67.99	59.85	56.96	46.08	42.73	34.67	11.14	86.48	<u>84.30</u>
	1 in the age	Locality	76.37	64.32	81.62	45.42	59.19	86.42	15.01	84.19	81.90
		Fluency	555.65	572.50	596.40	592.90	601.77	590.05	532.85	613.31	586.20

Mass & Sequential Editing

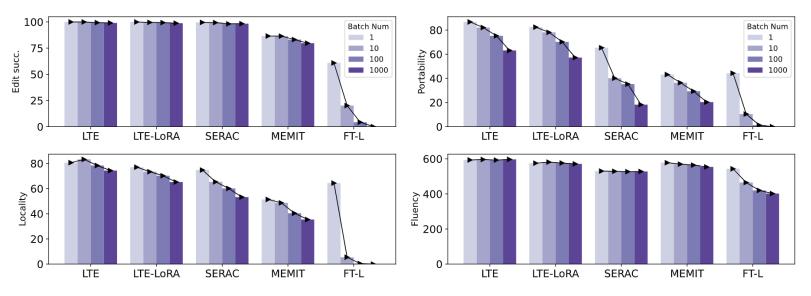
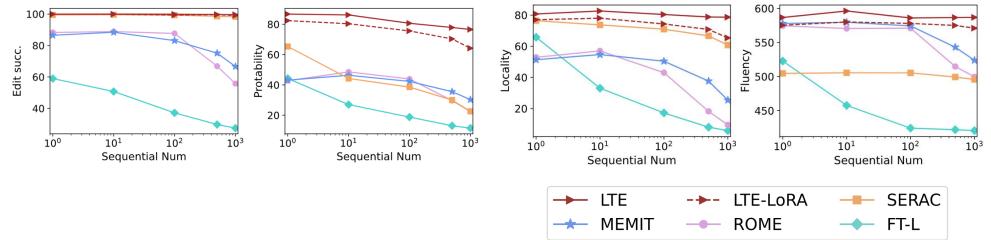


Figure 3: Averaged Batch Editing performance on four benchmarks against batch numbers in [1, 10, 100, 1000].



Linguistic Capability

	CommonSenseQA	PIQA	XSum	MMLU	AGIEval	AlpacaEval	Average
LLaMA2-Chat-7B	69.9	65.0	22.3	40.4	26.1	71.4	49.2
LTE w/o editing	67.2	61.3	22.4	46.4	26.5	73.3	49.5
LTE w/ editing	67.1	62.6	22.4	47.8	23.8	71.6	49.2
<i>Qwen-Chat-7B</i>	77.6	72.1	28.8	56.6	41.3	77.8	59.0
LTE w/o editing	74.7	69.3	29.9	59.3	41.9	79.2	59.1
LTE w/ editing	75.3	70.0	30.1	58.2	40.7	78.4	58.8

Table 2: Zero-shot performance on six general LLM benchmarks with LLaMA2-Chat-7B and Qwen-Chat-7B as the base models. "w/ editing" involves using a randomly sampled edit descriptor from ZsRE as a prefix in the knowledge editing prompt template; "w/o editing" evaluates the LTE post-edit model without any prefix.

Ablation

	S	Р	L	F	G
LTE	99.94	86.73	80.62	593.60	49.5
-w/o in-scope training	77.53	56.26	80.72	589.04	49.0
-w/o out-of-scope training	99.92	86.89	65.50	592.66	49.2
-w/o free-text QA training	99.93	86.30	80.91	587.75	43.9
-w/o threefold strategy	99.78	86.51	80.22	593.40	49.5
-w/o training	75.04	54.23	48.19	592.73	49.2

	Seq_Num	Edit Succ.	Portability	Locality
LTE w/ 420M R top $k = 3$	10	100.00	86.16	82.64
	100	99.90	80.66	80.38
	1000	99.64	76.59	78.67
LTE w/ 80M R top $k = 3$	10	100.00	83.38	78.65
	100	99.81	79.92	80.40
	1000	99.61	75.67	79.43
LTE w/ 420M R top $k = 2$	10	100.00	85.69	81.59
	100	99.85	80.05	80.67
	1000	99.63	76.27	78.05
LTE w/ 420M R top $k = 1$	10	100.00	84.01	81.96
	100	99.83	79.48	80.11
	1000	99.56	75.93	78.89

2. Lifelong Knowledge Editing for LLMs with Retrieval-Augmented Continuous Prompt Learning

Qizhou Chen^{1,2*}, Taolin Zhang^{2*}, Xiaofeng He^{1,3}, Dongyang Li^{1,2}, Chengyu Wang^{4†}, Longtao Huang², Hui Xue²

¹ East China Normal University, Shanghai, China ² Alibaba Group, Hangzhou, China
 ³NPPA Key Laboratory of Publishing Integration Development, ECNUP, Shanghai, China
 ⁴ Alibaba Cloud Computing, Hangzhou, China

chen_qizhou@outlook.com, zhangtl0519@gmail.com, chengyu.wcy@alibaba-inc.com

EMNLP 2024

Introduction

Previous Knowledge Editing Approaches..

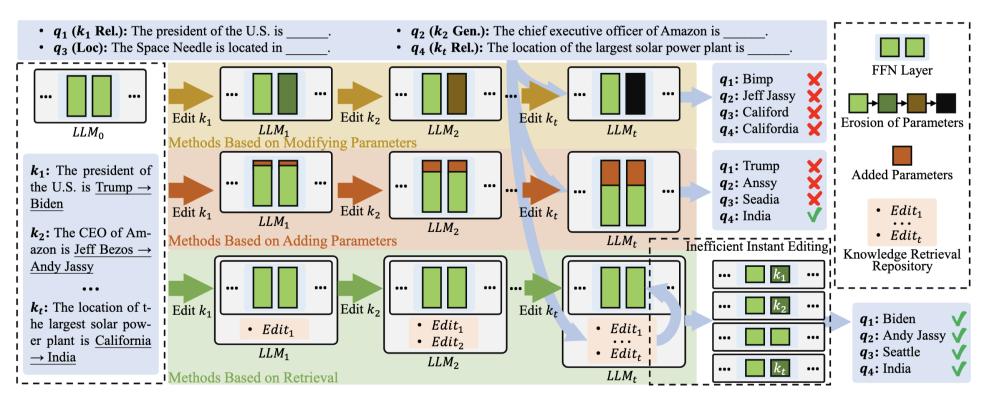


Figure 1: Comparison among three types of methods in lifelong editing scenarios. Modifying parameters and adding extra parameters result in the degradation of LLM performance as editing progresses. In contrast, retrieval-based editors store knowledge in a repository and apply knowledge editing on the fly, which maintains the LLM unchanged and relieves it from accumulating parameter offsets or adding extra parameters. (Best viewed in clolor)

RECIPE (a RetriEval-augmented ContInuous Prompt lEarning)

- 1. Knowledge Continuous Prompt Learning
- 1) Avoids the shortcomings of LTE
- (1) Overly long editing prefixes can reduce model inference speed

(2) Full-parameter fine-tuning also increases the risk of overfitting

→ P-tuning (Li and Liang 2021; Liu et al., 2022) based continuous prompt learning

ightarrow Using trainable word embedding vectors as prompts



Figure 2: From Lester et al. (2021) & P-tuning to P-tuning v2. Orange blocks (i.e., $h_0, ..., h_i$) refer to trainable prompt embeddings; blue blocks are embeddings stored or computed by frozen pre-trained language models.

RECIPE (a RetriEval-augmented ContInuous Prompt lEarning)

2. Dynamic Prompt Retrieval with Knowledge Sentinel

1) Mapping knowledge statements and queries into the same representational space

(1) 일반적으로는 setting a fixed similarity threshold를 설정함

- ightarrow Dynamic thresholds
- → Knowledge Sentinel (KS) (a trainable embedding representation)
- ightarrow Joint training with the prompt encoder and KS module

RECIPE (a RetriEval-augmented ContInuous Prompt lEarning)

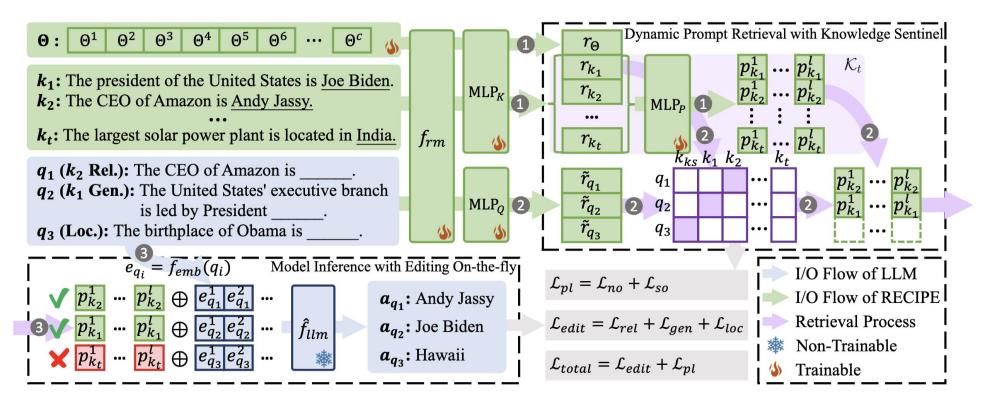
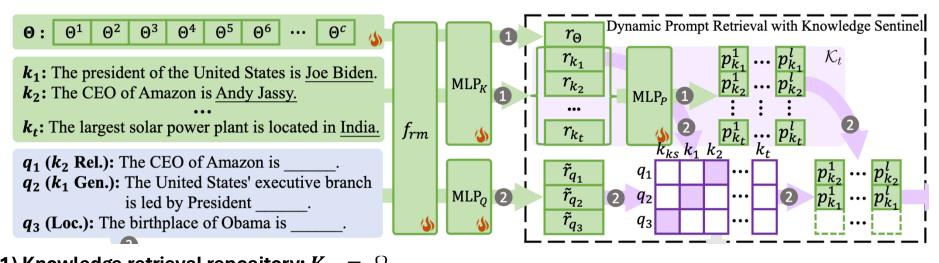


Figure 2: Illustration of the RECIPE framework. Process 1 constructs and updates the knowledge retrieval repository \mathcal{K}_t . During the inference stage, Process 2 retrieves query-related prompts from \mathcal{K}_t . Process 3 utilizes the retrieved continuous prompts to correct the LLM's response. For lifelong editing, the repository can be continuously updated (e.g., from \mathcal{K}_{t-1} to \mathcal{K}_t) with each new insertion of knowledge and prompts.

RECIPE (a RetriEval-augmented ContInuous Prompt lEarning)

1. Construction and Update of Knowledge Retrieval Repository



1) Knowledge retrieval repository: $K_0 = \{\}$ (1) K_{t-1} to K_t by adding a new key-value pair at each timestep t

Given a new knowledge statement K_t ,

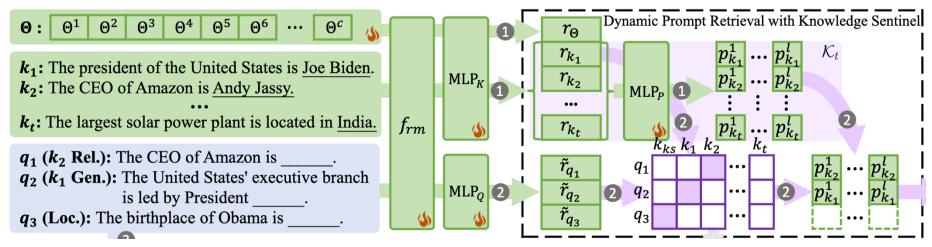
the knowledge representation is achieved through an encoder f_{rm} (RoBERTa) $r_{kt} = \mathbf{MLP}_K(f_{rm}(k_t))$

the continuous prompt p_{kt} is generated through another MLP $p_{kt} = f_{resp} \left(\mathbf{MLP}_P \left(r_{kt} \right) \right)$ f_{resp} is the reshape operation that maps the vector into a matrix with shape

$$\mathcal{K}_t = \mathcal{K}_{t-1} \cup \{(r_{k_t}, p_{k_t})\}$$
 where (r_{k_t}, p_{k_t}) is key-value pair for knowledge retrieval

RECIPE (a RetriEval-augmented ContInuous Prompt lEarning)

2. Dynamic Prompt Retrieval with Knowledge Sentinel



1) Knowledge Sentinel

- (1) Dynamic threshold fixed threshold X account for the knowledge varies
- ightarrow An intermediary leveraged to dynamically compute similarity threshold

(2) KS $\Theta \in R$ is a trainable word embedding of f_{rm} with token length c

(3) Knowledge representation space로 끌고오면.. $r_{\Theta} = \mathbf{MLP}_{K}(f_{rm}(\Theta))$

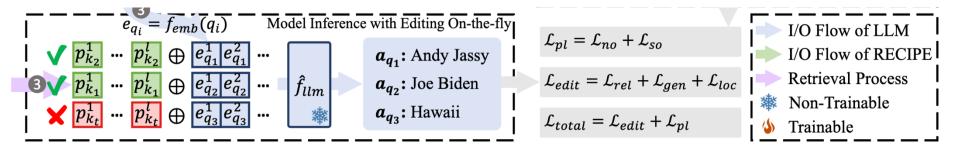
(4) 입력 q에 대한 retrieval process:

$$\tilde{r}_q = \mathbf{MLP}_Q(f_{rm}(q))$$

$$\mathbf{KS}(q) = \begin{cases} p_{k_j} & \tilde{r}_q^T \cdot r_{k_j} > \tilde{r}_q^T \cdot r_{\Theta} \\ \emptyset & \text{otherwise} \end{cases}$$

RECIPE (a RetriEval-augmented ContInuous Prompt lEarning)

3. Model Inference with Editing On-the-fly



1) Integration Issue

(1) Retrieved continuous prompt + word embedding "q" f_{llm} : $\mathcal{Q} \mapsto \mathcal{A}$, where \hat{f}_{llm} is f_{llm}

$$a_q = \hat{f}_{llm}(p_{k_{ au}} \oplus f_{emb}(q))$$

(2) Knowledge Editing as a mini-task

fine-tuning a specific prompt encoder for each mini-task,
 training RECIPE modules that generate continuous prompts, ensuring the LLM adheres to the corresponding knowledge.

RECIPE (a RetriEval-augmented ContInuous Prompt lEarning)

4. Model Training

Objective: Generate continuous prompts and effective retrieval of query-related knowledge for the LLM.

Given a batch of training data consisting of b editing sample pairs,

$$\{(q_{e_i}, a_{e_i})\}_{i=1}^b \qquad \{(q_{g_i}, a_{g_i})\}_{i=1}^b \qquad \{(q_{l_i}, a_{l_i})\}_{i=1}^b$$

1) Editing loss

(1) Aim to ensure that the generated continuous prompt guides the LLM to follow the properties - reliability, generality, locality

$$\mathcal{L}_{rel}^{(i)} = -\log \hat{f}_{llm} \left(a_{e_i} \mid p_{k_i} \oplus f_{emb}(q_{e_i}) \right) \quad (10)$$

$$\mathcal{L}_{gen}^{(i)} = -\log \hat{f}_{llm} \left(a_{g_i} \mid p_{k_i} \oplus f_{emb}(q_{g_i}) \right) \quad (11)$$

$$\mathcal{L}_{loc}^{(i)} = \mathrm{KL} \left(f_{llm} \left(q_{l_i} \right) \mid | \hat{f}_{llm} \left(p_{k_i} \oplus f_{emb}(q_{l_i}) \right) \right)$$

$$(12)$$

$$\mathcal{L}_{edit} = rac{1}{b} \sum_{i=1}^{b} \left(\mathcal{L}_{rel}^{(i)} + \mathcal{L}_{gen}^{(i)} + \mathcal{L}_{loc}^{(i)}
ight).$$

RECIPE (a RetriEval-augmented ContInuous Prompt lEarning)

4. Model Training

2) Prompt learning loss

(1) Contrastive learning for aligned with the properties of reliability, generality, and locality

For batch of samples,
$$\begin{aligned} \mathcal{L}_{no}^{(i)} &= \delta(\tilde{r}_{q_{e_i}}, r_{k_i}, R) + \delta(\tilde{r}_{q_{g_i}}, r_{k_i}, R), \\ \mathcal{L}_{so}^{(i)} &= \delta(\tilde{r}_{q_{l_i}}, r_{\Theta}, R) + \delta(\tilde{r}_{q_{e_i}}, r_{\Theta}, R_{\backslash k_i}) \\ &+ \delta(\tilde{r}_{q_{g_i}}, r_{\Theta}, R_{\backslash k_i}), \\ \mathcal{L}_{pl} &= \frac{1}{b} \sum_{i=1}^{b} (\mathcal{L}_{no}^{(i)} + \mathcal{L}_{so}^{(i)}), \\ \text{where } R &= \{r_{k_i}\}_{i=1}^{b} \cup \{r_{\Theta}\} \text{ and } R_{\backslash k_i} = R \setminus \{r_{k_i}\} \\ \text{InfoNCE loss:} \quad \delta(q, k_+, \{k_i\}_{i=1}^n) = -\log \frac{\exp(q \cdot k_+ / \tau)}{\sum_{i=1}^n \exp(q \cdot k_i / \tau)}, \end{aligned}$$

Neighbor-oriented loss + Sentinel-oriented loss

Editing Performance

# Editing	Туре	Editor	Rel.	Gen.	ZSRE Loc.	Avg.	Rel.	Gen.	CF Loc.	Avg.	Rel.	Gen.	RIPE Loc.	Avg.
	MP	FT MEND ROME	47.86 73.86 53.49	42.57 70.33 51.58	93.89 66.10 93.96	$\begin{array}{c} 61.44_{(\pm 1.00)} \\ 70.10_{(\pm 0.96)} \\ 66.34_{(\pm 0.69)} \end{array}$	41.37 81.06 41.07	26.04 67.15 21.82	52.25 77.13 91.85	$\begin{array}{c} 39.89_{(\pm 0.74)} \\ 75.11_{(\pm 0.62)} \\ 51.58_{(\pm 0.82)} \end{array}$	41.54 66.37 48.33	33.89 29.37 27.08	53.27 29.68 42.48	$\begin{array}{c} 42.90_{(\pm 0.33)}\\ 41.81_{(\pm 0.91)}\\ 39.30_{(\pm 0.89)}\\ \end{array}$
1		MEMIT MALMEN WILKE	49.67 46.37 50.71	49.36 47.75 48.52	91.87 33.73 93.31	$\begin{array}{c} 63.64 (\pm 0.61) \\ 42.62 (\pm 0.43) \\ 64.18 (\pm 0.55) \end{array}$	45.40 52.45 40.07	29.25 42.31 21.92	92.93 36.58 91.70	$55.86_{(\pm 0.39)}$ $43.78_{(\pm 0.58)}$ $51.23_{(\pm 0.45)}$	58.37 51.53 47.85	29.54 33.86 27.90	38.67 20.45 38.50	$\begin{array}{c} 42.19_{(\pm 0.39)} \\ 35.28_{(\pm 1.05)} \\ 38.08_{(\pm 1.02)} \end{array}$
	AP	TP	86.35	83.98	86.34	$85.56_{(\pm 0.53)}$	91.41	68.61	38.94	$66.32_{(\pm 1.18)}$	76.98	55.10	51.29	$61.13_{(\pm 0.48)}$
	RB	GRACE R-ROME LTE RECIPE	99.20 51.87 98.97 99.40	33.23 49.40 97.29 99.01	99.82 98.82 85.90 99.96	$\begin{array}{c} 77.42_{(\pm0.78)} \\ 66.70_{(\pm1.54)} \\ 94.05_{(\pm0.15)} \\ \textbf{99.46}_{(\pm0.07)} \end{array}$	98.65 39.46 98.12 98.78	11.42 20.76 97.13 98.78	98.73 97.38 92.20 99.01	$\begin{array}{c} 69.60_{(\pm0.66)}\\ 52.54_{(\pm0.86)}\\ 95.81_{(\pm1.21)}\\ \textbf{98.86}_{(\pm0.39)}\end{array}$	98.13 46.15 98.49 99.36	28.45 23.95 88.09 89.56	99.75 92.99 85.79 99.78	$\begin{array}{c} 75.44_{(\pm0.65)}\\ 54.37_{(\pm0.96)}\\ 90.79_{(\pm0.61)}\\ \textbf{96.24}_{(\pm0.95)}\end{array}$
		ET	14.66	12 (1	2.60	0.00	6.04	0.69	2.49	2.70	7.01	0.12	1.00	2.05
1000	MP	FT MEND ROME MEMIT MALMEN WILKE	14.66 0.04 1.54 0.18 32.03 15.19	$12.61 \\ 0.02 \\ 1.48 \\ 0.22 \\ 28.50 \\ 12.60$	2.69 0.00 0.63 0.14 28.14 25.31	$\begin{array}{c} 9.99_{(\pm1.00)}\\ 0.02_{(\pm0.01)}\\ 1.22_{(\pm0.90)}\\ 0.18_{(\pm0.07)}\\ 29.56_{(\pm1.33)}\\ 17.70_{(\pm1.32)}\end{array}$	$\begin{array}{c} 6.94 \\ 0.01 \\ 0.15 \\ 0.09 \\ 15.80 \\ 13.22 \end{array}$	$\begin{array}{c} 0.68 \\ 0.00 \\ 0.13 \\ 0.05 \\ 16.41 \\ 12.28 \end{array}$	3.48 0.02 0.12 0.99 22.53 43.09	$\begin{array}{c} 3.70 (\pm 0.09) \\ 0.01 (\pm 0.00) \\ 0.14 (\pm 0.03) \\ 0.38 (\pm 0.18) \\ 18.25 (\pm 0.22) \\ 22.86 (\pm 0.64) \end{array}$	$7.91 \\ 0.00 \\ 0.02 \\ 0.02 \\ 42.33 \\ 15.19$	$2.13 \\ 0.02 \\ 0.01 \\ 0.02 \\ 38.45 \\ 14.25$	$ 1.82 \\ 0.02 \\ 0.03 \\ 0.03 \\ 38.52 \\ 10.99 $	$\begin{array}{c} 3.95 (\pm 0.40) \\ 0.02 (\pm 0.00) \\ 0.02 (\pm 0.01) \\ 0.02 (\pm 0.01) \\ 39.77 (\pm 0.97) \\ 13.48 (\pm 1.15) \end{array}$
	AP	TP	44.72	41.38	4.38	$30.16_{(\pm 1.04)}$	64.70	32.50	11.63	$36.28_{(\pm 0.72)}$	42.24	26.80	9.87	$26.30_{(\pm 1.01)}$
	RB	GRACE R-ROME LTE RECIPE	42.04 48.73 93.03 96.30	33.42 36.49 91.14 95.27	96.73 94.09 84.42 99.98	$\begin{array}{c} 57.40_{(\pm0.68)}\\ 59.77_{(\pm0.77)}\\ 89.53_{(\pm1.16)}\\ \textbf{97.18}_{(\pm0.50)}\end{array}$	52.75 35.64 95.87 96.37	12.86 14.03 95.27 96.04	91.02 87.94 89.35 93.66	$\begin{array}{c} 52.21_{(\pm 0.85)}\\ 45.87_{(\pm 0.91)}\\ 93.50_{(\pm 0.26)}\\ \textbf{95.35}_{(\pm 0.61)}\end{array}$	38.03 41.49 94.53 95.60	30.10 16.96 84.52 85.53	91.24 68.98 80.44 92.35	$\begin{array}{c} 53.12_{(\pm 0.61)}\\ 42.48_{(\pm 1.21)}\\ 86.50_{(\pm 0.75)}\\ \textbf{91.16}_{(\pm 1.28)}\end{array}$

Linguistic Capability

Editor	CSQA	MMLU	ANLI	SQUAD-2	Average
N/A	38.91	41.54	34.04	36.43	37.73
FT	19.27	29.93	33.33	0.59	20.78
MEND ROME	20.31 19.97	24.68 23.03	33.07 33.47	$\begin{array}{c} 0.04\\ 0.41\end{array}$	19.52 19.22
MEMIT TP	19.68 19.62	23.23 22.84	33.39 33.37	0.01 0.96	19.08 19.20
GRACE	38.60	41.20	33.93	36.28	37.50
R-ROME MALMEN	38.50 20.85	41.12 24.83	33.90 33.03	36.31 0.27	37.46 19.75
LTE WILKE	19.45 19.87	23.21 23.37	33.41 33.37	$25.25 \\ 0.07$	25.33 19.17
RECIPE	19.87 38.76	25.57 41.40	33.37 34.13	36.50	37.70

Table 2: Performance of LLAMA-2 after 1,000 edits. "N/A" denotes performance without any edits. Bold font highlights the optimal post-editing performance.

Further..

Туре	Editor	Edit Time	Infer. Time	Total Time	
	FT	1.7205	0.0589	1.7794	
	MEND	0.0987	0.0590	0.1577	
MP	ROME	17.1639	0.0586	17.2225	
MP	MEMIT	33.6631	0.0591	33.7222	
	MALMEN	2.3418	0.0589	2.4007	
	WILKE	38.7165	0.0587	38.7752	
AP	TP	5.9061	0.0615	5.9676	
6	GRACE	12.5343	0.0936	12.6279	
RB	R-ROME	17.3135	0.0606	17.3741	
КD	LTE	0.0076	0.0634	0.0710	
	RECIPE	0.0078	0.0598	0.0676	

Table 3: Average time (s) taken for a single edit and model inference after 10,000 edits.

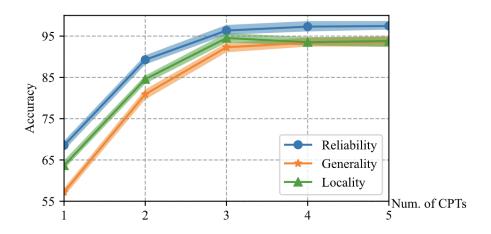


Figure 3: Impact of the number of CPTs on editing performance of RECIPE.

Sattinga	-	100 Edi	ts	1000 Edits				
Settings	Rel.	Gen.	Loc.	Rel.	Gen.	Loc.		
N/A	27.30	26.07	100.00	27.30	26.07	100.00		
RECIPE - CPT - KS - BOTH	97.29 27.42 95.55 27.41	93.74 26.18 89.10 26.17	97.38 99.98 92.45 99.96	96.05 27.38 94.01 27.35	92.34 26.15 86.63 26.12	95.36 99.97 88.55 99.94		

Table 4: Ablation study of RECIPE.

1) RAG의 강력함 (뭔가.. Converge 하는 것 같기도 하고, 평균 이상의 성능을 보이기도 함)

2) Knowledge Editing은 여러 도메인의 기술이 접목되는 영역

3) 과거의 아이디어도 다시 빛을 발휘할 수 있음

4) LTE & RECIPE의 약점은 무엇일까?

Q&A