S M|ojLt (1/716)

Al Agent

;S’) ' latural [_anguage
S9%& rocessing

£, Artificial Intelligence

N0 el gm)

KOREA UNIVERSITY




What is Al Agent

*ASXS(LLM)S &Eot0], AAXNY SHE 27, XS oliEot, it 2HS Li2l= Xsd AlAH

State(ENV)
/ Al Agent \

Observation(Data) I:> \i\ F\\J I:> Action(Solution)

\_ o / %




What is Al Agent

*Al Agent2| gt

£

—

50 =

' 4 ™
Profile ( Memory | ( Planning | [ Action )
ot 2@ / -
‘3 e .'\-p-.-fe [ l "’ Z —
@ T 0g® SPLA . =
i Memory Structure . i
Profile Contents " .:yd M Planning w/o Feedback Action Target
N i ) » Unified Memory » TaskCompletion > Exploration
g EemogrﬁphllcflnforTatlon » Hybrid Memory » Single-path Reasoning » Communication
» Personality Information - : :
N , v . Memory Formats » Multi-path Reasoning Action Produc.tlon
» Social Information » External Planner » Memory Recollection
» languages > Databases » PlanFollowing
Generation Strategy > Embeddings > Lists Planning w/ Feedback Action Space
» Handcrafting Method Memory Operation 5 Environment Feedback » Tools » Self-Knowledge
» LLM-Generation Method > Memory Reading > Human Feedback Action Impact
» Dataset Allgnment Method ’ Memﬂry Wntlng » Model Feedback » Environments » New Actions
» Memory Reflection # Internal States
\_ J % 8

A

https://link.springer.com/article/10.1007/s11704-024-40231-1
RSB



ExpeL: LLM Agents Are Experiential Learners

Andrew Zhao,* Daniel Huang, * Quentin Xu, * Matthieu Lin, * Yong-Jin Liu, * Gao Huang **

® Department of Automation, BNRist, Tsinghua University
* Department of Computer Science, BNRist, Tsinghua University
{zgc21,huang-jy22,xgd22, lyh21}@mails.tsinghua.edu.cn,
{liuyongjin, gachuang}@tsinghua.edu.cn

AAAI 2024

‘sq, latural Language
S9%& rocessing

£ Artificial Intelligence

Al

KOREA UNIVERSITY




Abstract & Introduction
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A computer program is said to learn from experience
E with respect to some class of tasks 7" and
performance measure P, if its performance at tasks in
T’, as measured by P, improves with experience F.

Tom Mitchell
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Abstract & Introduction
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Expel Framework
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Expel Framework
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Expel Framework

*Learning from Experiences
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Expel Framework

*Task Inference

Task
description:

q

3 Extracted
= insights:

Retrieved
@ in-context

examples:

You are QA system. Solve a question
answering task with interleaving ...

1. Break down complex queries into
simpler, ...

2. Consider that the answer might be in
the observations already made...

3. ...

Question: Which documentary ... ?
Thought1: | need to search ...

Action N:  Finish[The Saimaa ..
Obervation N: Answer is CORRECT

| S

P e

Trajectory: Thought1: | need to search ...
Action 1: | Search['The Clash ..]
Observation 1: “The Clash of Triton", ...

Thought2: The paragraph does ...

Action H: | Finish["To SquarePants ..

Obervation H: Answer is CORRECT O
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Expel Framework

*Transfer Learning Knowledge transfer [F AR j
--------------------------------- ewshot Evaluation |-,

.-| Knowledge Finetunin } ------------------------------ .~
[ : e The following paragraph is insights a teacher agent

provided to you. It is MANDATORY for you to follow
these insights as CLOSELY as possible as they will
help you perform the {Target Task} tasks efficiently:

You are a teacher agent that passes on experience to
student agents. You came up with the following rules
to help you achieve the task of {Source Task}
effectively. The number at the end are the importance

you gave to each of the rules. [Finetuned insights]

RULES:
[Extracted insights from Source Task]

[Target Task desciption + fewshot]

{Target Task} %

 Source TaskO||A| ===l InsightE= Target
Task?| Few-Shotdt LLMZ E4l Fine-tuning
7t&(In-Context Learning)

Now a student agent is trying to solve a similar {Target
Task}.

Some examples of this new task are:
[Fixed fewshot examples of Target Task]

Give a concise and easy to follow instructional
paragraph based on the RULES for the student agent
to solve {Target Task}. Do not state where each
sentence is using whichever rule, and make sure the
paragraph is VERY CONCISE and EASY TO FOLLOW!

- *
"-* ----------------------------------------------------
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Experiments

*Experiments Env

« Hotpot QA
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Result

*Experiments Env

Success Rate %

45 -

35 1

23 7

15 -

Alfworld

45

] R ¢ 41

25

HotpotQA
55
t
45
1
35
25
15 -
£ Imitation Learning ExpeL (insights-only)
O Act @ ReAct

15

ExpelL (retrieve-only)

WebShop

@ Expel (ours)

« R[1-3]: number of Reflexion attempts
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Result

*Experiments Env

HotpotQA (SR %)

ReAct 280+ 14
Hand-crafted insights 320+ 1.1
Insights with reflections 29.0+ 04
gpt—-3.5-turbo insights 32.0+ 04
ExpeL (ours) 39.0 1.7
ALFWorld (SR %)
ReAct 40.0 £0.3
Reasoning similarity 48.5 + 2.1
Random sampled 425+ 0.8
ExpeL (ours) 59.0 £ 0.3

Table 3: Ablations Results. Upper: Ablations on in-
sight extraction. Hand-crafted insights enjoyed a per-
formance boost over ReAct but were less effective than
LLM-generated ones. Furthermore, adding reflections to the
insight-generating process hurt performance. Lastly, better
LLM base models give better insights. Lower: Ablations on
in-context examples selection strategy. Randomly selected
baseline has a significant drop in performance while ranking
using reason similarity also has a noticeable dip.

14
RSB



Conclusion and Limitations
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AutoGen Framework

_______ = e @ Plot a chart of Output:
Conversable agent i : i e a® A & @ Output:
S P '_' ; ' & : stock price change //
I 1 : | I — | » YTD. $ /
I
: ‘ ' : I : I : Execute the <
[ ’_ : SIS RS AS A S following code... - Month
I - - . o,
' ® XM Multi-Agent Conversations €@ @D Error package e @GP Mo please plot %
: - / : yfinance is not change!
| installed
e ' @ @ e e : e Got it! Here is the ¢Zh
N Eaadl B . orry! Please first .. revised code ... -
ST it B8 e @ | N . 8 pip install yfinance @9 e
' ' P | \ / / $ \ ine and then execute - Output:
(=) : : (5—51‘2([' IR = == : the code
- - ' @ | - @ € o
: : : e @ ' @ =) Installing...
@D m o 8e
________ | e o Joint chat Hierarchical chat e
on
Agent Customization Flexible Conversation Patterns Example Agent Chat
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AutoGen Framework

*Conversable Agent - Admin
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ConversableAgent
Agent Customization: T —. - Unifiedd Conversation Interfaces:
- ®. sen
human_input_mode = “NEVER” I : receive
code_execution_config = False I J&x | » generate_reply
DEFAULT_SYSTEM_MESSAGE = “You g
are a helpful AI assistant. [ | Siaae ST human_input_mode = “NEVER™
In the following cases, suggest { v} = :
AutoGen python code.” __ human_input_mode = “ALWAYS” -grjgl_.l_p__f_f'-lflt [« '.'Qf ‘<) G;’]
Agents i Telip g e
@ ' &
- - I
[ @ ' | [l ,
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AutoGen Framework

*Conversation Programming - Controlled by LLM, Programming
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1.2 Register a Custom Reply Func: 1.1 Define Agents:

# This func will be invoked ir ————- 1

| |
generate_reply
JENErate_r | [ . I | . - . I :

_ I = I ¢ 3 I I ¥ Mote: whnen no reply
A.register_reply(B, I | @ I func is registered, a
reply_func_AZB) | m I | list of default reply
def reply_func_AZB(msg): | - - — — I L ] functions will be used

Developer B User Proxy A Assistant B
Code FIFReC ampnt: " T T T TS B .
1 if msg includes code: ! 2 Initiate Conversations:
! output execute(msg) A.initiate_chat({“Plot a chart of META and

e o o o o e o e e s el

return output TESLA stock price change YTD.™, B)
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AutoGen Framework

*Conversation Programming - Conversation-centric computation
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4 The Resulting Automated Agent Chat:
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Control Flow Plot a chart of METAand r_ﬂ?_'-i_e}_k'_!_e_, generate_reply
TESLA stock price change YTD. _
receive Execute the following Send :
Program i R 1. [ ——
; e..
Execution 1
generate_reply Error: package yfinance is not
—_—t . installed * QEHEFUtE‘_FEpl}"
send :
Conversation-Centric Sorry! Please first pip install =~~~ :
Computation vfinance and then execute



Experiments

*Examples
Student Assistant Assistant Retrieval-augmented Retrieval-augmented Q
o @ e User Proxy Assistant /; ’
@) 1 () ! aAsk 1 . & @ juc-S5
expert : -~ < > - ALFWorld
P L@ | - \f 1 ®) Executor
(28): T D Assistant Conan
Expert A
A1. Math Problem Solving A3. ALF Chat
Commander Chess Board
& | @
PN
,,,,,,,,,, D T @
@ @D (84| (©a
| l @ = Human/Al Chess Human/Al Chess
Writer Safeguard Player A Player B
A4. Multi-agent Coding A5. Dynamic Group Chat A6. Conversational Chess
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Experiments

*Examples - Math Problem Solving

Correctness Failure Reason
AutoGen 3/3 N/A.
AutoGPT 0/3 The LLM gives code without the print function so the
result 1s not printed.

ChatGPT+Plugin 1/3 The return from Wolfram Alpha contains 2 simplified

results, including the correct answer, but GPT-4 always

chooses the wrong answer.

ChatGPT+Code Interpreter 2/3 Returns a wrong decimal result.
LangChain ReAct 0/3 LangChain gives 3 different wrong answers.
Multi-Agent Debate 0/3 It gives 3 different wrong answers due to calculation errors.

(a) Evaluation on the first problem that asks to simplify a square root fraction.

Correctness Failure Reason
AutoGen 2/3 The final answer from code execution is wrong.
AutoGPT 0/3 The LLM gives code without the print function so the
result is not printed.
ChatGPT+Plugin 1/3 For one trial, GPT-4 got stuck because it keeps giving
wrong queries and has to be stopped. Another trial simply
gives a wrong answer.
ChatGPT+Code Interpreter 0/3 It gives 3 different wrong answers.
LangChain ReAct 0/3 LangChain gives 3 different wrong answers.
Multi-Agent Debate 0/3 It gives 3 different wrong answers.

(b) Evaluation on the second number theory problem.

2 B

S

Success Ratio (%)

Student Assistant Assistant

@ @ @

RE)TIE) ) Ak 8
expert

A1. Math Problem Solving

G9.48%
] —1 Whaole

55.18%
52.5% —

48.33%

B0.0%;

= 120 Lewel-5 problems

Datasat

2667
23.33%

1 |

AutoGen  ChatGPT  ChatGPT GPT-4
+Code +Plugin
Methods

Multi-Agent LangChain
Dehate React
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Experiments

*Examples - Retrieval Augmented Chat

___________ 1. Question and Contexts .

3. Terminate, feedbacks or "Update Context’ @
>
4. Satisfied Answers or Terminate I
|
F E — e [
3 AutoGen
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Experiments

*Examples - Multi Agent Coding

L 4
am User
@ user Questionl T Final Answer

Repeat until
answering the
user’s question or

timeout

4
”
”
-
-~

Dataset | netflow facility tsp

Percentage (%)

100 9

B0 1

&l 4

I Multi-GPT4
=] Single-GPT4

96.00% 98.00%  mmm Multi-GPT3.5

(2]
oo
o
=
=

83.00%

=3 Single-GPT3.5

]

8.00

ES

72.00%

v

WA,

1

Saving Ratio | 3.14x (0.65) 3.14x (0.64) 4.88x (1.71)

Recall
Metrics
coffee diet
3.38x (0.86) 3.03x (0.31)




Conclusion and Limitations
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Our Approach
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Our Approach
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Experiment

*Negotiation Al Agent?| d5 HJ}

System Prompt System Prompt

You are Player Blue. Player Red
will propose you how to split 100
dollars. If you reject the offer you
both lose all. ¥

You are Player Red. You need to
split 100 dollars with Player Blue.
If Player Blue rejects the split you
both lose all.

Red

<message> Hello Player Blue, I'll give you $50 out of my 100. </message>

<trade> Player Red Gives $50 | Player Blue Gives $0</trade>

Blue
<message> Fifty? That's barely an improvement. | must say, your negotiation
skills are as underwhelming as your initial offer. Come on, impress me!

</message>

<trade> Player Red Gives $60 | Player Blue Gives $0 </trade>

Red

<message> This is a fair trade. | accept. </message>

1000|2t= 35 A2 £11, Red 1}
Blue EIO| |——|'-r-| X = =2t

& £ 5810] T2, RedOf|
Negotiation Al Agent?| &£

=2 GOl Ot S £ FOMLE HIMA E
= USK], MA & == UK 2 T

31



Experiment
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Experiment Results: Success Rates and Failure Representation in Resource Negotiation Experiment Results: Success Rates and Failure Representation in Resource Negotiation
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