2025. 08. 21.

윤정호

Intro

*현 RAG의 문제점

- Long Context 문제
 - LLM 학습으로 굳어진 Context length에 고정
- Inference Cost
 - RAG는 Transformer 구조에서 검색된 Doc 수에 따라 2차적으로 증가
- Document 저장
 - Retrieve 후 가져올 Doc를 저장 및 불러와야 함
- Embedding vector의 1회성
 - Retrieve 후 Embedding Vector는 사용될 일이 없음

선행 연구

Generative Representational Instruction Tuning

Niklas Muennighoff ^c Hongjin Su ^h Liang Wang ^m Nan Yang ^m

Furu Wei ^m Tao Yu ^h Amanpreet Singh ^c Douwe Kiela ^c

^c Contextual AI ^h The University of Hong Kong ^m Microsoft Corporation

niklas@contextual.ai

Generation + Embedding Model

ICLR 2025 Poster

Context Embeddings for Efficient Answer Generation in RAG

David Rau* University of Amsterdam Amsterdam, Netherlands d.m.rau@uva.nl

Hervé Déjean Naver Labs Europe Grenoble, France herve.dejean@naverlabs.com Shuai Wang*[†]
The University of Queensland
Brisbane, Australia
shuai.wang2@uq.edu.au

Stéphane Clinchant Naver Labs Europe Grenoble, France stephane.clinchant@naverlabs.com

WSDM 2025

PISCO: Pretty Simple Compression for Retrieval-Augmented Generation

Maxime LOUIS

Naver Labs Europe

maxime.louis@naverlabs.com

Hervé DejeanNaver Labs Europe

Stéphane ClinchantNaver Labs Europe

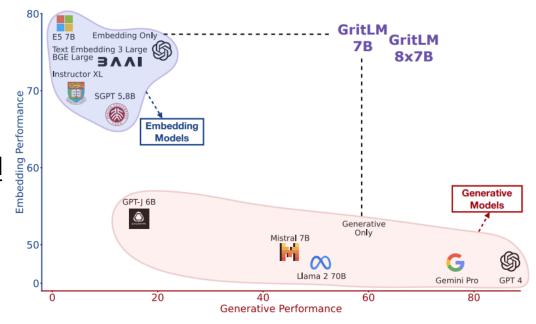
ACL 2025 findings

Context Embedding를 활용한 Context Length 감소

1. Generative Representational Instruction Tuning

*Abstract & Introduction

- 기존 Model들은 Embedding, Generation 따로 진행
- Generation 모델에 Representation task를 진행하려면 fine-tuning이 필요하고, Generative 능력 상실



- ⇒ Generative Instruction tuning과 Representational instruction tuning을 동시에 진행 하여 두 task 모두 성능을 높임
- ⇒ Query, Document 모두 Retrieve를 위해 Embedding 생성할 때 모델을 지나가기에 cache를 저장할 수 있고, 이를 통해 추론 속도를 높일 수 있음

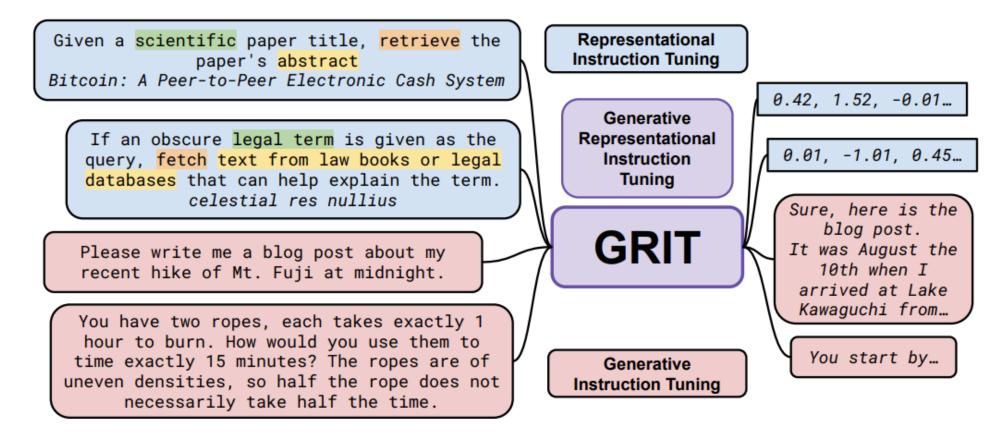
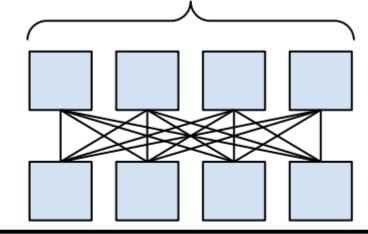


Figure 2: **GRIT.** The same model handles both text representation and generation tasks based on the given instruction. For representation tasks, instructions ideally contain the target domain, intent, and unit [5]. The representation is a tensor of numbers, while the generative output is text.

Representation

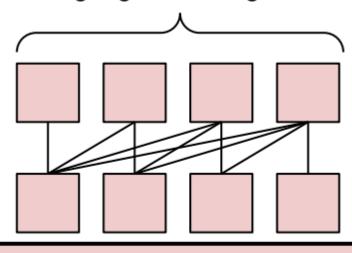
Mean Pooling



<s><|user|>
 {instruction}
 <|embed|>
{sample to represent}

Generation

Language Modeling Head



<s><|user|>
{instruction}
<|assistant|>
{response}</s>
<|user|>...

*GRIT Training

$$\mathcal{L}_{\text{Rep}} = -\frac{1}{M} \sum_{i=1}^{M} \log \frac{\exp(\tau \cdot \sigma(f_{\theta}(q^{(i)}), f_{\theta}(d^{(i)})))}{\sum_{j=1}^{M} \exp(\tau \cdot \sigma(f_{\theta}(q^{(i)}), f_{\theta}(d^{(j)})))} \quad \bullet \quad \text{E5 Dataset}$$

• 기존 embedding 모델 Loss와 동일

$$\mathcal{L}_{\text{Gen}} = -\frac{1}{N} \sum_{i=1}^{N} \log P(f_{\theta,\eta}(x^{(i)}) | f_{\theta,\eta}(x^{(< i)})) \qquad \qquad \bullet \quad \text{Tulu 2 Dataset}$$

• 기존 Generative 모델 Loss와 동일

$$\mathcal{L}_{GRIT} = \lambda_{Rep} \mathcal{L}_{Rep} + \lambda_{Gen} \mathcal{L}_{Gen}$$

*Embedding Performance

Task (\rightarrow) Metric (\rightarrow) Dataset # (\rightarrow)	CLF Acc.	Clust. V-Meas. 11	PairCLF AP 3	Rerank MAP 4	Retrieval nDCG 15	STS Spear. 10	Summ. Spear. 1	Avg. 56			
	Proprietary models [♥]										
OpenAI v3	75.5	49.0	85.7	59.2	55.4	81.7	29.9	64.6			
	Other Open Models♥										
Llama 2 70B Mistral 7B	60.4	29.0 34.6	47.1 53.5	38.5 43.2	9.0 13.2	49.1 57.4	26.1 19.7	35.6 40.5			
Mistral 7B Instruct GPT-J 6B SGPT BE 5.8B	67.1 66.2 68.1	34.6 39.0 40.3	59.6 60.6 82.0	44.8 48.9 56.6	16.3 19.8 50.3	63.4 60.9 78.1	25.9 26.3 31.5	43.7 45.2 58.9			
Instructor XL 1.5B BGE Large 0.34B	73.1 76.0	44.7 46.1	86.6 87.1	57.3 60.0	49.3 54.3	83.1 83.1	32.3 31.6	61.8			
E5 Mistral 7B	78.5	50.3	88.3	60.2	56.9	84.6	31.4	66.6			
			GRITI	LM							
Genonly 7B Embonly 7B GRITLM 7B GRITLM 8x7B	65.4 78.8 79.5 78.5	32.7 51.1 <u>50.6</u> 50.1	54.2 87.1 <u>87.2</u> 85.0	43.0 60.7 <u>60.5</u> <u>59.8</u>	13.7 57.5 <u>57.4</u> 55.1	60.2 <u>83.8</u> <u>83.4</u> 83.3	21.1 30.2 30.4 29.8	41.2 <u>66.8</u> <u>66.8</u> 65.7			

*Generative Performance

	1 3 O O T T T	CCNTON	DDII	T. D. O. I	TT E 1	4.1				
Dataset (\rightarrow)	MMLU	GSM8K	BBH	TyDi QA	HumanEval	Alpaca	Avg.			
Setup (\rightarrow)	0 FS	8 FS, CoT	3 FS, CoT	1 FS, GP	0 FS	0 FS, 1.0				
Metric (\rightarrow)	EM	EM	EM	F1	pass@1	% Win				
		Prop	rietary mode	ls♥						
GPT-4-0613	81.4	95.0	89.1	65.2	86.6^{\dagger}	91.2	84.8			
		Othe	r Open Mode	ls♥						
GPT-J 6B	27.7	2.5	30.2	9.4	9.8	0.0	13.3			
SGPT BE 5.8B	24.4	1.0	0.0	22.8	0.0	0.0	8.0			
Zephyr 7B β	58.6	28.0	44.9	23.7	28.5	85.8	44.9			
Llama 2 7B	41.8	12.0	39.3	51.2	12.8 [•]	0.0	26.2			
Llama 2 13B	52.0	25.0	48.9	56.5	18.3◆	0.0	33.5			
Llama 2 70B	64.5	55.5	66.0	62.6	29.9◆	0.0	46.4			
Llama 2 Chat 13B	53.2	9.0	40.3	32.1	19.6^{\dagger}	91.4	40.9			
Llama 2 Chat 70B	60.9	59.0	49.0	44.4	34.3 [†]	94.5	57.0			
Tülu 2 7B	50.4	34.0	48.5	46.4	24.5^{\dagger}	73.9	46.3			
Tülu 2 13B	55.4	46.0	49.5	53.2	31.4	78.9	52.4			
Tülu 2 70B	<u>67.3</u>	73.0	<u>68.4</u>	53.6	41.6	86.6	<u>65.1</u>			
Mistral 7B	60.1	44.5	55.6	55.8	30.5	0.0	41.1			
Mistral 7B Instruct	53.0	36.0	38.5	27.8	34.0	75.3	44.1			
Mixtral 8x7B Instruct	68.4	<u>65.0</u>	55.9	24.3	53.5	94.8	60.3			
	GRITLM									
Embonly 7B	23.5	1.0	0.0	21.0	0.0	0.0	7.6			
Genonly 7B	57.5	52.0	55.4	56.6	34.5	75.4	55.2			
GRITLM 7B	57.6	57.5	54.8	55.4	32.8	74.8	55.5			
GRITLM 8x7B	66.7	61.5	70.2	<u>58.2</u>	<u>53.4</u>	84.0	65.7			

*Analysis

MTEB DS (↓)	No Rerank	Rerank top 10
ArguAna	63.24	64.39
ClimateFEVER	30.91	31.85
CQADupstack	49.42	50.05
DBPedia	46.60	47.82
FiQA2018	59.95	60.39
FEVER	82.74	82.85
HotpotQA	79.40	80.46
NFCorpus	40.89	41.23
NQ	70.30	71.49
MSMARCO	41.96	42.47
QuoraRetrieval	89.47	88.67
SCIDOCS	24.41	24.54
SciFact	79.17	79.28
TRECCOVID	74.80	75.24
Touche2020	27.93	28.41
Average	57.4	57.9

Train DS (\rightarrow)	E:	5S	ME	DI2
MTEB DS (↓)	0 FS	1 FS	0 FS	1 FS
Banking77	88.5	88.3	88.1	87.9
Emotion	52.8	51.0	52.5	51.9
IMDB	95.0	93.9	94.3	92.2
BiorxivS2S	39.8	39.4	37.6	37.4
SprintDup.	93.0	94.9	95.2	95.7
TwitterSem	81.1	77.9	76.8	73.9
TwitterURL	87.4	87.1	85.9	86.1
ArguAna	63.2	51.7	53.5	53.2
SCIDOCS	24.4	19.7	25.5	25.5
AskUbuntu	67.3	64.7	66.6	66.0
STS12	77.3	78.0	76.6	73.5
SummEval	30.4	29.5	29.1	31.5

Reranking with GRITLM

Few-shot embedding does not work

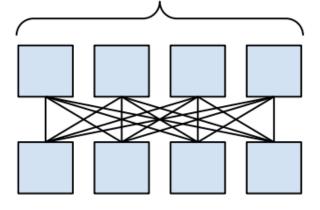
*Ablations

Attention Emb	Attention Gen	Pooling	Emb	Gen
Instruction Sample	Instruction Sample	1 doining	Lino	Gen
	Embedding Only			
Causal		Wmean	60.0	-
Causal Bidirectional		Mean	61.0	-
Bidirectional		Mean	61.8	-
	Generative Only			
	Causal		-	55.2
	Bidirectional Causal		-	50.7
	Unified			
Causal	Causal	Last token	61.2	53.0
Causal	Causal	Wmean	62.8	52.8
Bidirectional	Causal	Mean	64.0	52.9

Attention and Pooling ablations

Representation

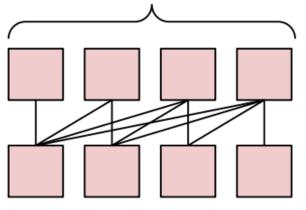
Mean Pooling



Bidirectional Attention

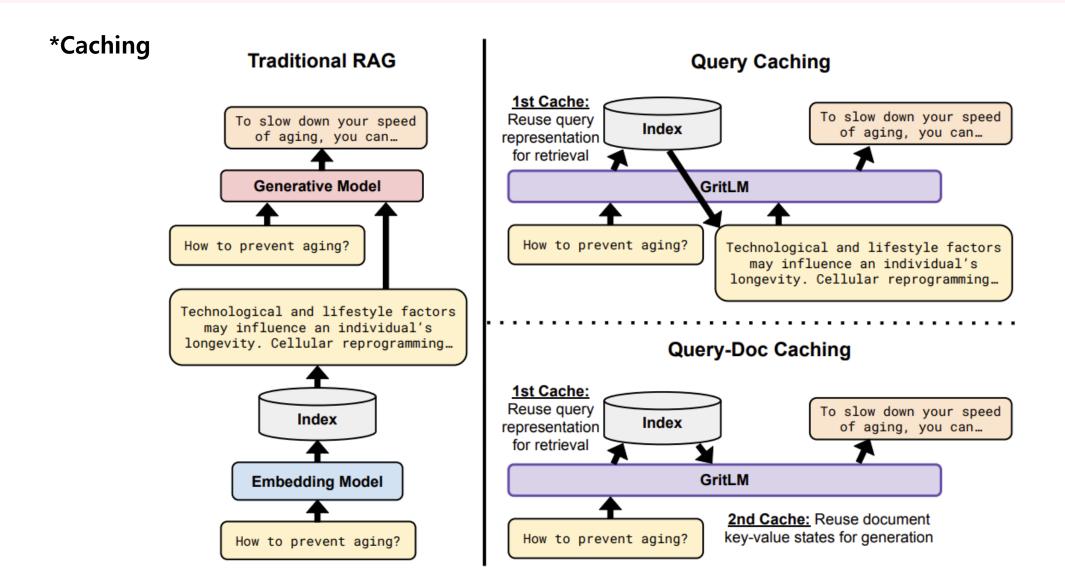
Generation

Language Modeling Head



Causal Attention

1. Generative Representational Instruction Tuning



1. Generative Representational Instruction Tuning

*Caching Results

	Match (0-shot, ↑)	CPU Late Sample A	ency (s, \lambda) Sample B	GPU Late Sample A	ency (s, ↓) Sample B	Storage (\dagger)
No RAG	21.00	4.3 ± 0.36	13.69 ± 1.0	0.24 ± 0.04	0.38 ± 0.04	0GB
		Query then	document pron	npt		
RAG Query Caching Query-Doc Caching	30.50 25.46 21.63	11.64 ± 0.74 18.30 ± 0.76 5.12 ± 0.23	14.88 ± 0.87 6.87 ± 0.89 $\underline{6.62 \pm 0.97}$	$\begin{array}{c c} 0.39 \pm 0.02 \\ 0.44 \pm 0.03 \\ \underline{0.27 \pm 0.03} \end{array}$	0.40 ± 0.02 0.27 ± 0.02 0.29 ± 0.01	43GB 43GB 30TB
		Document t	then query pron	npt		
RAG Doc Caching Doc-Query Caching	30.47 33.38 18.39	$ \begin{vmatrix} 14.18 \pm 1.01 \\ 5.25 \pm 0.34 \\ \underline{5.23 \pm 0.37} \end{vmatrix} $	15.33 ± 0.87 23.23 ± 1.05 6.41 ± 0.96	$\begin{vmatrix} 0.39 \pm 0.01 \\ 0.27 \pm 0.03 \\ 0.26 \pm 0.03 \end{vmatrix}$	0.4 ± 0.01 0.45 ± 0.02 0.27 ± 0.02	43GB 30TB 30TB

Caching storage and Latency time

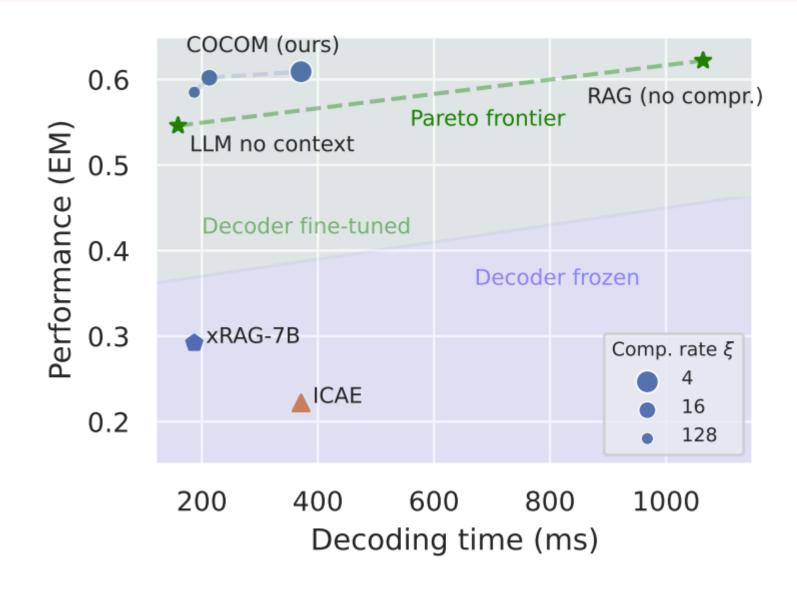
Conclusion

- Generation과 Embedding, Reranking을 한번에 한 모델로 진행할 수 있으며 간단함
- Caching을 통해 Inference 속도를 향상할 수 있음

*한계

- Embedding model의 사이즈가 상용 모델에 비해 커지며, 차원도 늘어남
- Caching의 Storage size가 급격히 증가
- Embedding 할 때 Caching 값이 Attention 차이로 인해 그대로 활용하기 어려움

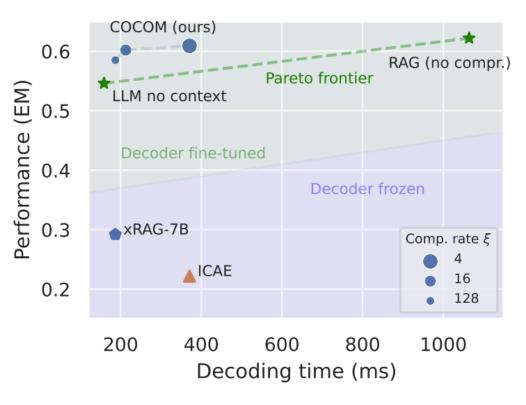
2. Context Embeddings for Efficient Answer Generation in RAG



2. Context Embeddings for Efficient Answer Generation in RAG

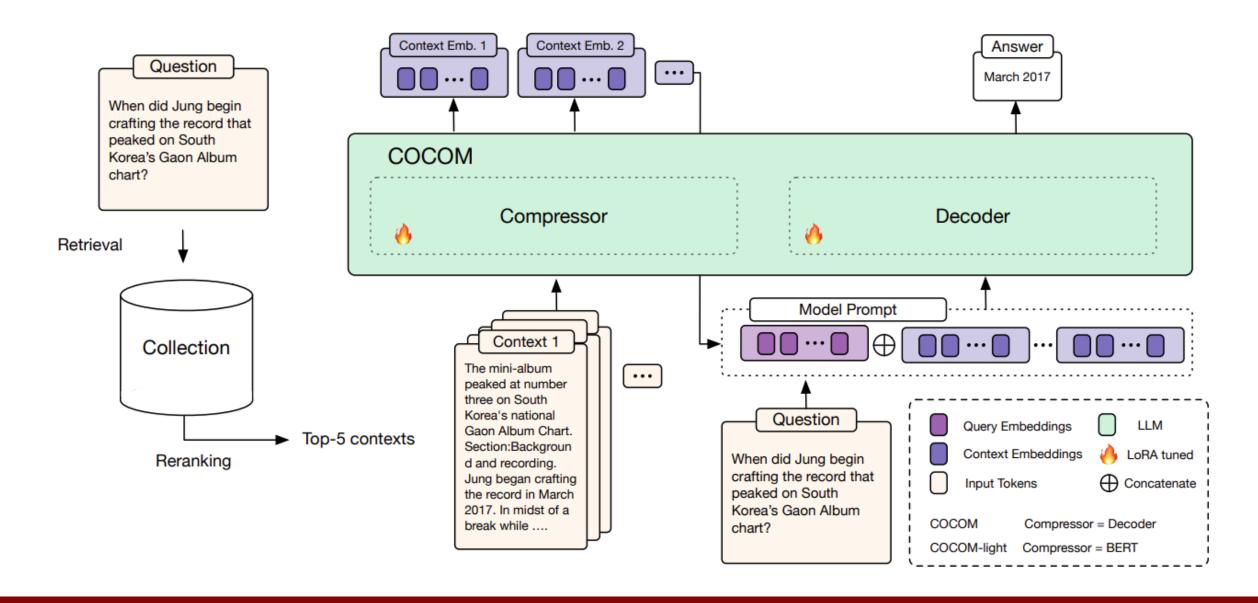
*Abstract & Introduction

- 기존 RAG의 문제
 - 외부 정보를 입력으로 주면서 LLM의 제한된 지식을 극복할 수 있도록 하지만 Context가 길어져 Decoding 시간이 길어 짐
- 기존 Compressor의 문제
 - 대형 Compressor model에 의존
 - Decoder의 학습 부재로 인해 낮은 성능
 - 고정된 Compression rate
 - 단일 Document



=> Long Context를 압축하여 Context Embedding으로 줄여 Decoding Time을 단축

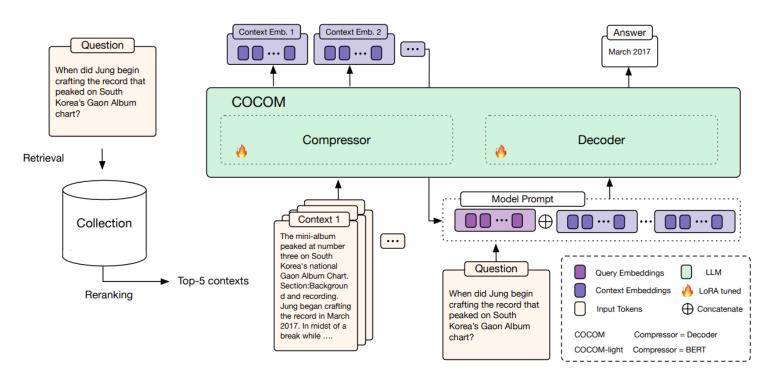
2. Context Embeddings for Efficient Answer Generation in RAG



*COCOM Inference

$$\phi_{comp}: \{t_1, t_2, \dots, t_n\} \to \{e_1, e_2, \dots, e_k\} \in \mathbb{R}^d$$

$$\theta_{LLM}: \{\mathcal{E}, x\} \to r$$
 $\phi_{comp} = \theta_{LLM}$



*COCOM Pre-training 1

$$\mathcal{E} = \phi_{comp}(x_1, x_2, \dots, x_T)$$

$$\mathcal{L}(\theta_{LLM}, \phi_{comp}) = -\sum_{x_t \in \mathcal{X}} \log P_{\theta_{LLM}}(x_t \mid \mathcal{E}, x_1, \dots, x_{t-1})$$

• Compressor을 통해 압축된 Embedding이 Decoder를 통해 원상복구 될 수 있도록 학습

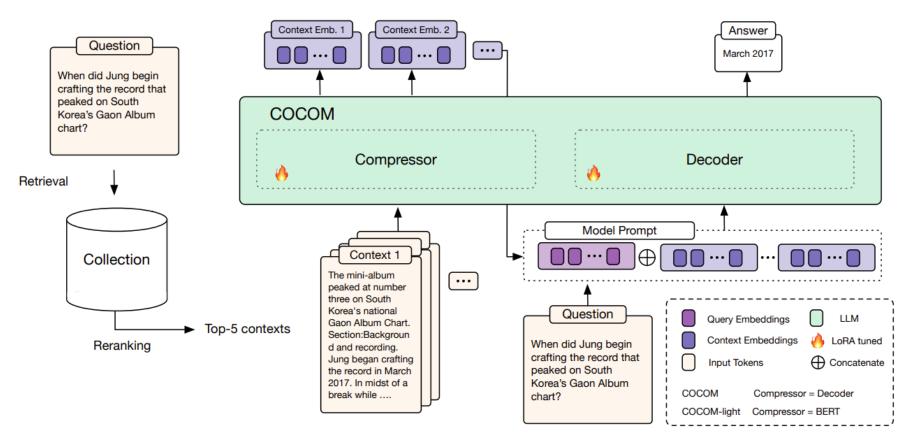
*COCOM Pre-training 2

$$X = \{x_1, x_2, \dots, x_T\}$$
 $X_A = \{x_1, x_2, x_j\}$ $X_B = \{x_{j+1}, \dots, x_T\}$
$$\mathcal{L}(\theta_{LLM}, \phi_{comp}) = -\sum_{x_t \in X_B} \log P_{\theta_{LLM}}(x_t \mid \phi_{comp}(X_A), x_1, \dots, x_{t-1})$$

• Compressor을 통해 부분만 압축된 문장을 복구할 수 있도록 학습

*COCOM Fine-tuning

$$\mathcal{L}(\theta_{LLM}, \phi_{comp}) = -\sum_{r_t \in R} \log P_{\theta_{LLM}}(r_t \mid I_{\mathcal{E},q}, r_1, r_2, \dots, r_{t-1})$$



RESULTS

*Main Results

Decoder	Method	Compression rate (ξ)			Datas	set		
			NQ	TriviaQA	HotpotQA	ASQA	PopQA	Average
	AutoCompressor [4]★	× 4	0.000	0.000	0.000	0.000	0.000	0.000
ho	ICAE [8]	$\times 4$	0.210	0.592	0.184	0.222	0.290	0.300
S-0.	xRAG [3]★							
Zero-shot	Mistral-7B-v0.2	× 128	0.184	0.622	0.185	0.182	0.199	0.274
	Mixtral-8x7b	× 128	0.265	0.744	0.239	0.292	0.318	0.372
	RAG [△] (no compression)	-	0.597	0.883	0.500	0.622*	0.514	0.623
N	LLM [▽] (without context)	-	0.359	0.708	0.264	0.546	0.199	0.416
ed	COCOM-light (ours)	× 4	0.539	0.849	0.409	0.601*	0.458	0.531
din 19		× 16	0.492	0.823	0.367	0.565	0.385	0.526
Fine-tuned istral-7B-v0		× 128	0.444	0.794	0.321	0.550	0.314	0.485
Fine-tuned Mistral-7B-v0.2	COCOM (ours)	× 4	0.554	0.859	0.430	0.609	0.474	0.585
V	. ,	× 16	0.539	0.852*	0.426*	0.602*	0.465	0.577
		× 128	0.511	0.835	0.378	0.585*	0.391	0.540

COCOM-light = Compressor를 BERT 모델로 활용하고 차원을 맞추기 위해 Projection layer 추가

RESULTS

*Computational Efficiency

Model Mistral-7b-v0.2	ξ	Decoding Time (ms)	GPU Mem. (GB)	GFLOPs
RAG (no compr.) LLM (no context.)	-	1064 159	18.1 14.1	25031 607
COCOM (-light)	16	371 (× 2.87) 213 (× 5.00) 187 (× 5.69)	14.4 (× 1.29)	7016 (× 3.57) 2465 (× 10.16) 1138 (× 22.00)

Compressor	ξ	Time (h)	Index size (TB)
COCOM	4	89	6.06
	16	77	1.51
	128	73	0.19
COCOM-light	4	1	6.06
	16	1	1.51
	128	1	0.19

시간, 메모리, 연산량 모두에서 극적인 감소를 보여줌

24m Context 압축량

RESULTS

*Ablation

Model	ξ	N	Q	AS	QA
		k=1	k=5	k=1	k=5
COCOM	4	0.499	0.554	0.558	0.609
	16	0.491	0.539	0.541	0.602
	128	0.482	0.511	0.544	0.585

Ablation	Dat	asets
	NQ	ASQA
COCOM-light (baseline)	0.444	0.550
w/o pre-training	0.423	0.524
pre-training on FineWeb	0.427	0.545
w/o tuning decoder	0.353	0.438
COCOM (baseline)	0.519	0.585
w/o pre-training	0.490	0.565
pre-training on FineWeb	0.503	0.581
w/o tuning decoder	0.421	0.521

Doc의 숫자를 늘이면 성능 증가

Ablation study

Conclusion

- 여러 압축률을 선택할 수 있어 상황에 따라 품질과, 생성 시간의 균형을 유지할 수 있음
- Context를 여러 개 넣을 수 있어 생성 품질 향상

*한계

- Retrieval model을 따로 써야 한다는 것은 변함 없음
- Context가 5개로 제한됨
- Document를 청크 크기로 나눈 후 Compressor model을 지날 때 7B 모델 전체를 지나 가야 하므로 리소스 소모가 큼

3. PISCO: Pretty Simple Compression for RAG

*Abstract & Introduction

- 기존 RAG의 문제
 - Long Context
 - Inference Cost
- 기존 압축 방법의 문제
 - COCOM은 압축률이 높지만 정답률이 많이 떨어짐
 - PreTraining이 필요함

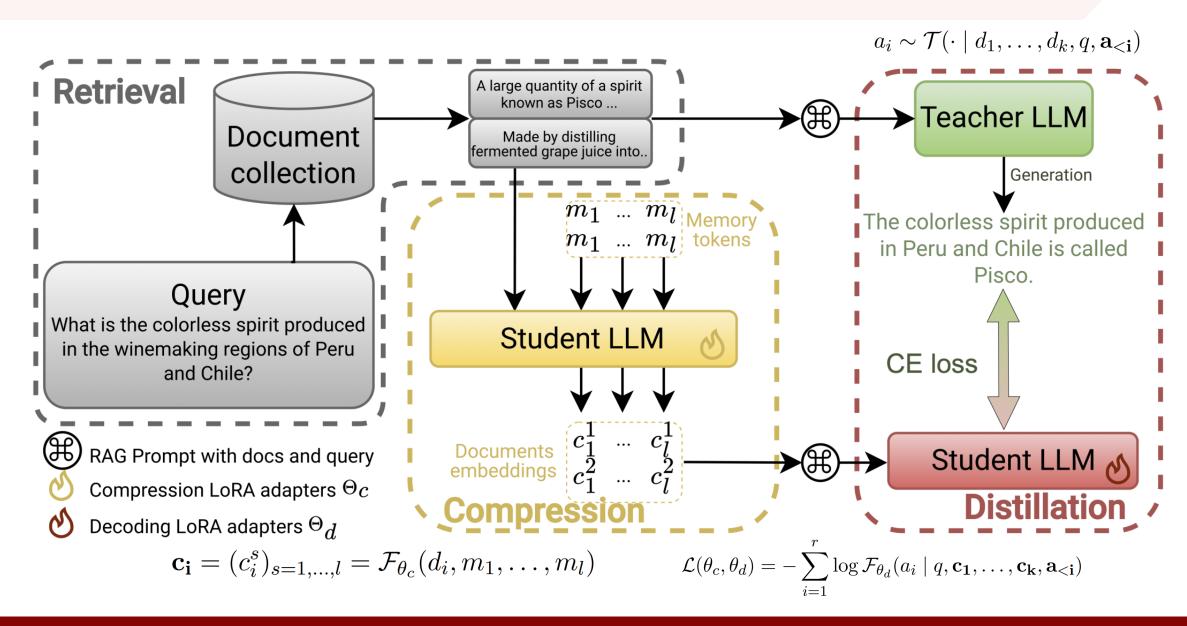
PreTraining = 원문 복원하기, 빈칸 채우기, 뒷 문장 이어서 생성하기...;



⇒ PreTraining 없이, 정확도 손실을 최소화하며 압축률을 유지한 SKD 방식을 활용

SKD = Sequence-level Knowledge Distillation

3. PISCO: Pretty Simple Compression for RAG



Training

*SKD

- Compressor와 Decoder를 동시에 학습함 $a_i \sim \mathcal{T}(\cdot \mid d_1, \ldots, d_k, q, \mathbf{a_{< i}})$
- Top-5로 뽑힌 128 토큰으로 나뉘어진 Doc를 Query와 함께 Teacher model에 집어넣어 Silver Label 생성
- ⇒ 여기선 Gold Label인지가 중요한 것이 아니라, 원래 모델이 출력하는 것을 그대로 출력할 수 있는지가 목표
- Compressor는 문서와, Memory 토큰을 통해 Compress된 Vector C 생성

$$\mathbf{c_i} = (c_i^s)_{s=1,...,l} = \mathcal{F}_{\theta_c}(d_i, m_1, ..., m_l)$$

• Decoder는 Query와 C를 통해 Silver Label을 생성하도록 학습 r

$$\mathcal{L}(\theta_c, \theta_d) = -\sum_{i=1} \log \mathcal{F}_{\theta_d}(a_i \mid q, \mathbf{c_1}, \dots, \mathbf{c_k}, \mathbf{a_{$$

*Main Results

	Compression rate	ASQA	HotpotQA	NQ	TriviaQA	POPQA	Average
	Decoders with	no compr	ession				
Mistral-7B	-	0.74	0.51	0.69	0.92	0.70	0.71
Llama-3.1-8B	-	0.71	0.50	0.65	0.90	0.68	0.69
Solar-10.7B	-	0.75	0.55	0.71	0.93	0.71	0.73
	Compressi	on Mode	ls				
xRAG-mistral-7B [†] (Cheng et al., 2024)	x128	0.34	0.27	0.32	0.77	0.33	0.40
AutoCompressor ^{†‡} (Chevalier et al., 2023)	x4	0.57	0.31	0.35	0.70	0.24	0.43
ICAE [‡] (Ge et al., 2023)	x4	0.47	0.29	0.42	0.78	0.43	0.48
DODO [‡] (Qin et al., 2024)	x10	0.52	0.38	0.48	0.82	0.47	0.53
COCOM (Rau et al., 2024b)	x16	0.63	0.46	0.58	0.89	0.48	0.61
PISCO - Mistral $^{\Delta}$ (Ours)	x16	0.72	0.48	0.65	0.90	0.66	0.68
PISCO - Mistral (x128) (Ours)	x128	0.68	0.46	0.61	0.89	0.55	0.64
PISCO - Llama (Ours)	x16	0.72	0.50	0.64	0.91	0.66	0.69
PISCO - Solar (Ours)	x16	0.78	0.57	0.70	0.94	0.71	0.74

*Main Results

Pairwise evaluations with gpt-40

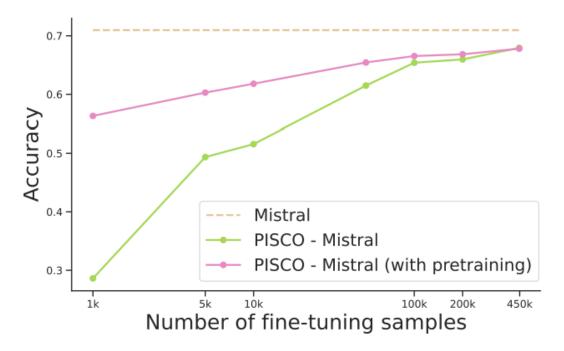
	PISCO wins	Tie 1	Mistral-7B wins			
POPQA	30.6%	51.6%	17.8%			
ASQA	35.0%	34.0%	31.0%			
HotpotQA	35.5%	35.8%	28.7%			
TriviaQA	26.1%	54.0%	19.9%			
NQ	29.7%	40.4%	29.9%			

Model	GFlops	Time(s)	Max batch size		
Mistral-7B	11231	0.26	256		
PISCO-Mistral	2803	0.06	1024		
PISCO-Mistral (x128)	2312	0.05	>1024		

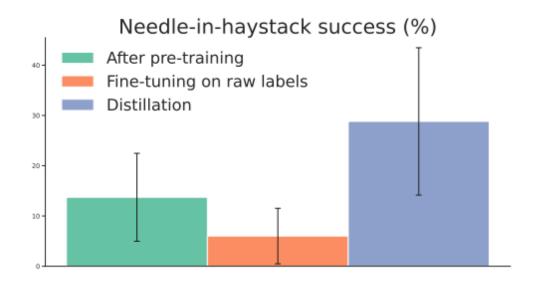
GPT 40를 통한 Answer Quality Evaluation

Computational efficiency

*Analysis of Training Data and Tasks

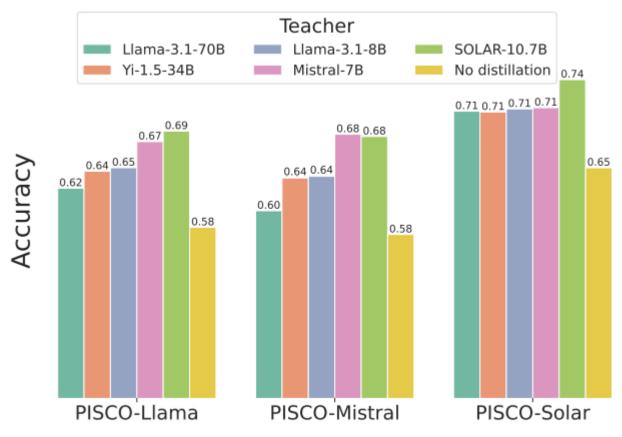


PreTraining을 진행해도 450k samples 이후로는 동등



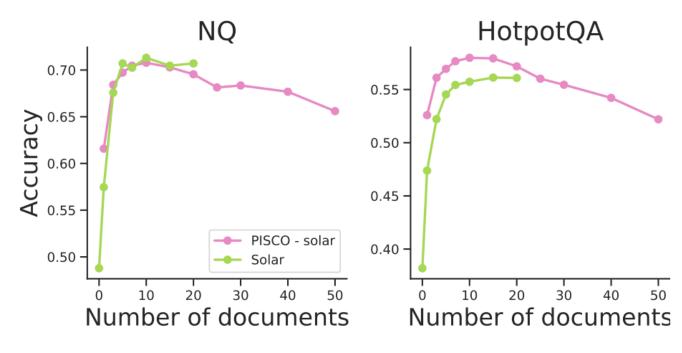
Needle in haystack task에서 단순 fine-tuning이 실패

*Analysis of Training Data and Tasks



Teacher and Labels Quality

*Generalization Evaluation



Increasing the num of documents

*Generalization Evaluation

				RobustQA					Multilingual QA			
Dataset Metric	Bio-QA Recall	Covid F1	ParaphraseRC Accuracy	Lifestyle F1	Writing F1	Science F1	Recreation F1	Tech F1	FR re	KO call-3gı	RU am	
Llama PISCO - Llama	0.26 0.24	0.17 0.12	0.48 0.38	0.25 0.28	0.23 0.27	0.25 0.26	0.25 0.26	0.23 0.26	0.56 0.54	0.28 0.24	0.47 0.44	
Mistral PISCO - Mistral	0.27 0.26	0.13 0.11	0.49 0.38	0.28 0.28	0.27 0.27	0.26 0.26	0.25 0.25	0.25 0.26	0.57 0.52	0.26 0.17	0.40 0.35	
Solar PISCO - Solar	0.28 0.29	0.14 0.10	0.50 0.47	0.28 0.29	0.27 0.28	0.26 0.25	0.26 0.25	0.25 0.26	0.59	0.20 0.16	0.52 0.48	

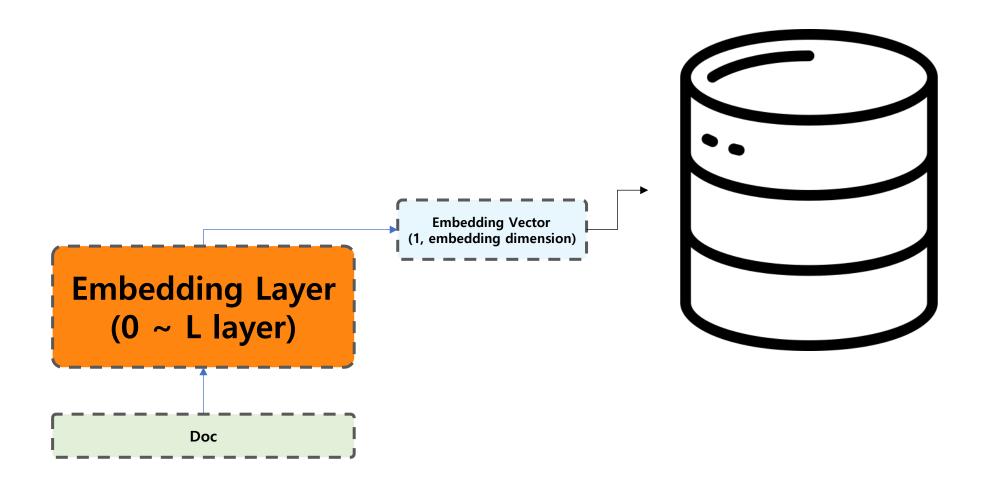
Out of domain & Multilinguality

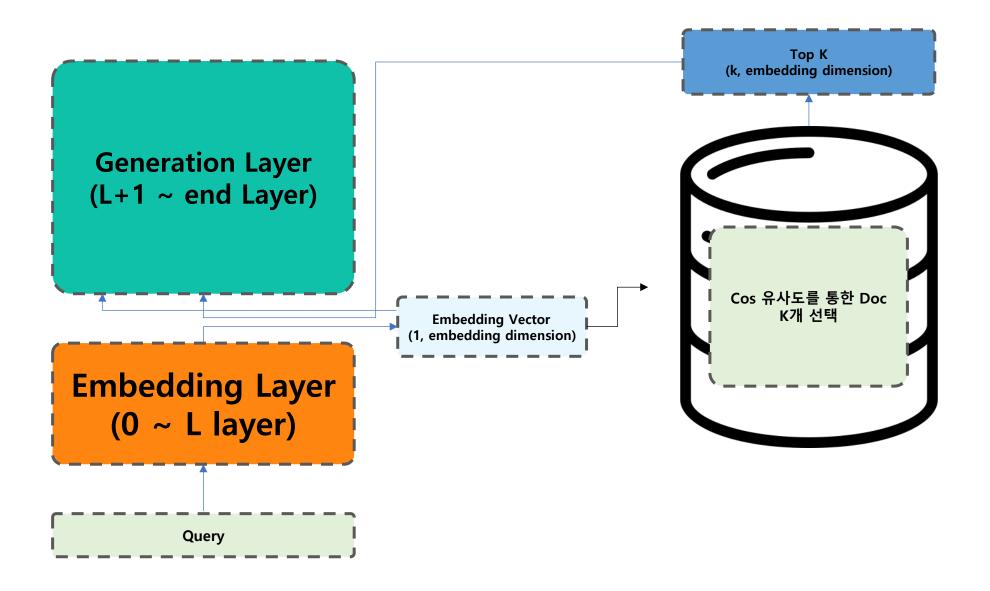
Conclusion

- 단순한 Gold Label을 학습하는 것 보다, 기존 모델의 출력인 Silver label을 그대로 따라 가는 것이 중요함
- 다양한 실험을 통해 일반화를 진행하였고, 다양한 도메인과 언어에서도 강인한 모습을 보여주었음
- 성능 저하를 최소화하며 추론 비용과 시간을 줄였음

*한계

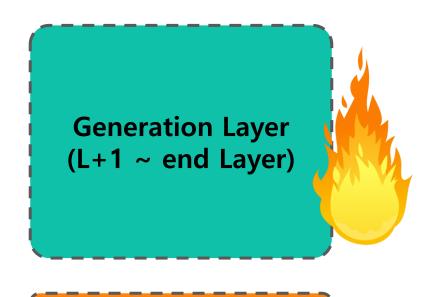
- Retrieval model을 따로 써야 한다는 것은 변함 없으며, 모델을 3개나 써야 함
- Document를 청크 크기로 나눈 후 Compressor model을 지날 때 7 ~ 10B 모델 전체를 지나가야 하므로 리소스 소모가 큼



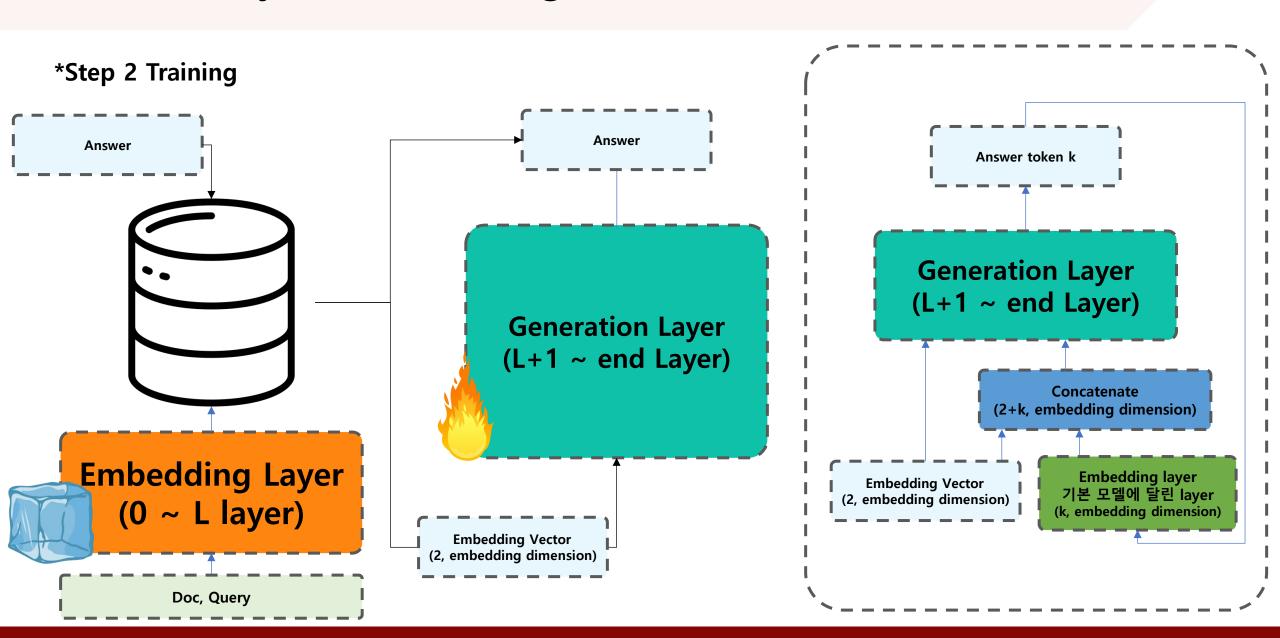


*Training

Training Step 1 - Embedding



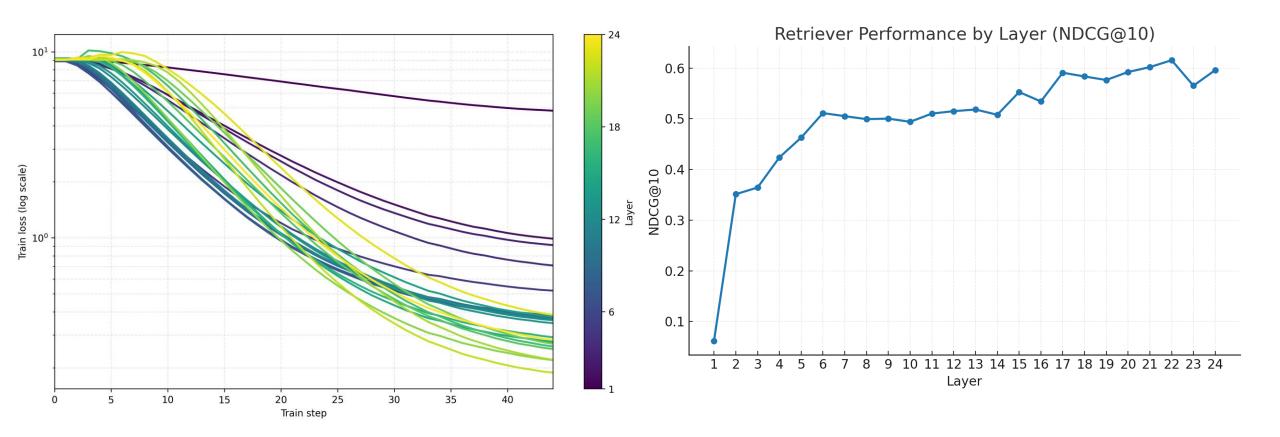
Training Step 2 – Generation



*Step 1 Training Experiments

- Qwen2.5-0.5B: 24 Layer
- 1 ~ 24Layer까지 Pruning을 진행하여 Last Token을 embedding으로 사용하고, 동일한데이터 셋(nlpai-lab/ko-triplet-v1.0)에서 학습하여 초반, 중반 부 Layer에서 모델을 다쓰지 않아도 일정한 성능을 유지할 수 있는지 확인

- 1 epoch / 5e-5 Learning rate / 4096 Batch size / 1024 max length
- A 6000 4장에서 5일 걸림



Embedding Training Loss

Embedding Evaluation

Thank you

