Reinforcement Learning

DAPO: An Open-Source LLM Reinforcement Learning System at Scale

ĺα

¹ByteDance Seed ²Institute for Al Industry Research (AIR), Tsinghua University ³The University of Hong Kong ⁴SIA-Lab of Tsinghua AIR and ByteDance Seed

Full author list in Contributions

GRPO

GRPO는 가치 함수 없이 그룹 내 정규화된 보상 $\{R_i\}_{i=1}^G$ 으로 어드밴티지 $\hat{A}_{i,t}$ 를 추정한다.

$$\mathcal{J}_{\text{GRPO}}(\theta) = \mathbb{E}_{(q,a) \sim \mathcal{D}, \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot | q)} \\ \left[\frac{1}{G} \sum_{i=1}^G \frac{1}{|o_i|} \sum_{t=1}^{|o_i|} \left(\min\left(r_{i,t}(\theta) \hat{A}_{i,t}, \text{ clip}\left(r_{i,t}(\theta), 1 - \varepsilon, 1 + \varepsilon\right) \hat{A}_{i,t}\right) - \beta D_{\text{KL}}(\pi_{\theta} | | \pi_{\text{ref}}) \right) \right]$$

$$\hat{A}_{i,t} = \frac{r_i - \text{mean}(\{R_i\}_{i=1}^G)}{\text{std}(\{R_i\}_{i=1}^G)}.$$

$$\operatorname{clip}\left(\frac{\pi_{\theta}(o_i|q)}{\pi_{\theta_{old}}(o_i|q)}, \frac{1-\varepsilon}{1-\varepsilon}, 1+\varepsilon\right)$$

 $r_{i,t}(\theta) = \frac{\pi_{\theta}(o_{i,t} \mid q, o_{i, < t})}{\pi_{\theta_{\text{old}}}(o_{i,t} \mid q, o_{i, < t})}.$

Ai는 i번째 정책에 주어지는 advantage이며, 강화학습의 환경에서 주어지는 절대적인 보상 reward와는 조금 다른 개념, 실제로는 상대적인 보상, 이득을 의미

clip 함수는 원하는 값이 너무 크거나 작아지지 않도 록 특정 범위 안으로 가두어 버리는 역할 => 학습 안정화 현재 정책($\pi heta$)과 참조 정책($\pi heta old$)의 비율 ri

=> 이 비율은 지난번 정책에 비했을 때, 새로운 정책이 선택될 가능성

- 정책이 업데이트될 때 특정 행동을 선택할 확률이 얼마나 달라졌는지(증가/감소 비율)를 직접 반영할 수 있게됨
- rule-based로 계산하는 직접 보상(Reward)을 그룹 단위로 표준화한 상대 보상(Advantage)을 사용하여 비용 효율적인 강화학습을 실현
- 비율(r)과 Advantage(A)를 곱해주는 이유: 정책이 바뀌었을 때 그 바뀐 정도가 실제로 그 행동의 이득(Advantage)에 부합하는지를 평가하기 위함
- clip을 통해 비율 자체를 특정 범위 안으로 가두어 버리면, *Ai*를 곱하면서 너무 크게 보상하거나 과하게 불이익을 주게 되는 상황을 방지할 수 있고<u>, 현재 정책이</u> <u>이전 정책에서 과도하게 멀어지지 않게 됨</u>

Problems

- GRPO baseline suffers from several key issues such as entropy collapse, reward noise, and training instability
- 4 Strategy
 - 1. Clip-Higher, which promotes the diversity of the system and avoids entropy collapse
 - 2. Dynamic Sampling, which improves training efficiency and stability
 - 3. Token-Level Policy Gradient Loss, which is critical in long-CoT RL scenarios
 - 4. Overlong Reward Shaping, which reduces reward noise and stabilizes training

Clip-Higher

- GRPO를 사용한 초기 실험에서 정책의 엔트로피가 학습이 진행됨에 따라 빠르게 감소하는 엔트로피 붕괴 현상을 관찰
- 특정 그룹의 샘플링된 응답은 거의 동일한 경향 => 제한된 탐색과 초기 결정적 정책의 오류로 인한 붕괴
- ⇒ ^{€high} 을 높여 (논문에서는 0.28 사용) 낮은 확률 토큰의 확률 증가에 더 많은 여유를 주어 정책 엔트로피를 높이고 다양한 샘플 생성을 촉진
- ⇒낮은 확률의 토큰 증가에 더 많은 여지

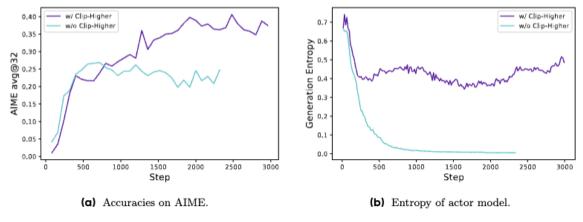
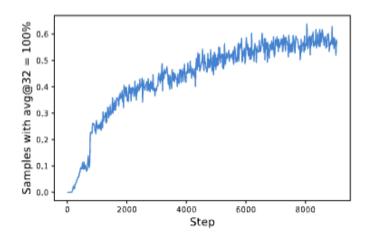


Figure 2 The accuracy on the AIME test set and the entropy of the actor model's generated probabilities during the RL training process, both before and after applying **Clip-Higher** strategy.

$$\begin{split} \mathcal{J}_{\mathrm{DAPO}}(\theta) = & \quad \mathbb{E}_{(q,a) \sim \mathcal{D}, \{o_i\}_{i=1}^G \sim \pi_{\theta_{\mathrm{old}}}(\cdot | q)} \\ & \quad \left[\frac{1}{\sum_{i=1}^G |o_i|} \sum_{i=1}^G \sum_{t=1}^{|o_i|} \min\left(r_{i,t}(\theta) \hat{A}_{i,t}, \text{ clip}\Big(r_{i,t}(\theta), 1 - \varepsilon_{\mathrm{low}}, 1 + \varepsilon_{\mathrm{high}}\Big) \hat{A}_{i,t} \right) \right] \end{split}$$

Dynamic Sampling

- 일부 프롬프트가 정확도 1 (Figure 3b) 또는 0을 달성하여 그룹 어드밴티지가 0
- ⇒ 효과적인 기울기 신호가 약해지고 배치(batch)의 효율성이 저하
- 특정 그룹의 샘플링된 응답은 거의 동일한 경향 => 제한된 탐색과 초기 결정적 정책의 오류로 인한 붕괴
- ⇒ 정확도가 1과 0인 프롬프트를 과도하게 샘플링하고 필터링하여 배치의 모든 프롬프트에 유효한 기울기를 남기고 일관된 수의 프롬프트를 유지할 것을 제안
- ⇒ 훈련 전에 정확도가 0 또는 1이 아닌 샘플로 배치가 완전히 채워질 때까지 계속 샘플링



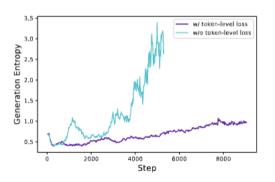
(b) The proportion of samples with an accuracy of 1.

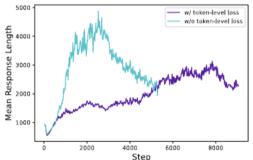


Figure 6 The training progress before and after applying dynamic sampling on a baseline setting.

Token-Level Policy Gradient Loss

- GRPO의 sample-level loss 계산 방식이 긴 응답 내 토큰의 기여도를 낮추고 과도하게 긴 저품질 응답을 효과적으로 제어하지 못하는 문제를 해결
- ⇒각 토큰이 전체 손실 계산에 동등하게 기여하도록 토큰 레벨 평균 (sum over tokens, then average over samples)을 사용
- ⇒이를 통해 긴 시퀀스가 전체 기울기 업데이트에 더 많은 영향을 미치고, 특정 생성 패턴이 응답 길이에 상관없이 동등하게 촉진되거나 억제
- ⇒DAPO는 그룹 내 모든 시퀀스의 모든 토큰에 대한 손실을 합산한 다음, 이를 전체 토큰 수로 나누어 평균





(a) Entropy of actor model's generation probabilities.

(b) Average length of actor model-generated responses

Figure 4 The entropy of the probability distribution of the actor model, as well as the changes in response length.

특징	GRPO의 Sample-Level Loss	DAPO의 Token-Level Loss
평균화 단위	시퀀스(샘플) 단위 로 먼저 평균하고, 그 다음 그룹 내 시퀀스 들을 평균	토큰 단위 로 모든 토큰의 손실을 합산한 후 전체 토큰 수로 평균
시퀀스 길이의 영향	긴 시퀀스의 개별 토큰 기여도 낮음 (시퀀스가 동등한 가중치)	긴 시퀀스가 전체 그라디언트에 더 큰 영향 (토큰이 동등한 가중치)
목표	각 샘플에 대한 정책 업데이트의 균형 유지	각 토큰에 대한 정책 업데이트의 균형 유지, 긴 시퀀스의 중 요성 강조
Long-CoT에서의 문 제점	긴 추론 패턴 학습 저해, 저품질 긴 시퀀스에 대한 약한 페널 티	
Long-CoT에서의 장 점		긴 추론 패턴 학습 강화, 저품질 긴 시퀀스 효과적 페널티

Overlong Reward Shaping

- RL 훈련에서 일반적으로 생성에 대한 최대 길이를 설정하고 과도하게 긴 샘플은 그에 따라 잘림
- 잘린 샘플에 대한 부적절한 보상 형성은 보상 노이즈를 유발하고 훈련 과정을 크게 방해할 수 있다는 것을 발견
- ⇒먼저 잘린 샘플의 손실을 마스킹하는 Overlong Filtering 전략을 적용
- ⇒특히, 응답 길이가 미리 정의된 최대값을 초과하면 처벌 간격을 정의. 이 간격 내에서 응답이 길수록 더 큰 처벌

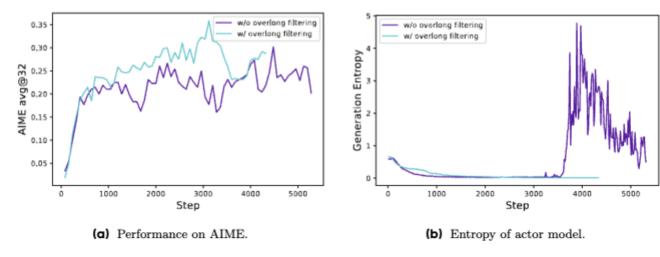


Figure 5 The accuracy of the actor model on AIME and the entropy of its generation probabilities, both before and after applying **Overlong Reward Shaping** strategy.

$$R_{ ext{length}}(y) = egin{cases} 0, & |y| \leq L_{ ext{max}} - L_{ ext{cache}} \ rac{(L_{ ext{max}} - L_{ ext{cache}}) - |y|}{L_{ ext{cache}}}, & L_{ ext{max}} - L_{ ext{cache}} < |y| \leq L_{ ext{max}} \ -1, & L_{ ext{max}} < |y| \end{cases}$$

Main Result

Table 1 Main results of progressive techniques applied to DAPO

Model	AIME24avg@32			
DeepSeek-R1-Zero-Qwen-32B	47			
Naive GRPO	30			
+ Overlong Filtering	36			
+ Clip-Higher	38			
+ Soft Overlong Punishment	41			
+ Token-level Loss	42			
+ Dynamic Sampling (DAPO)	50			

What to observe in RL?

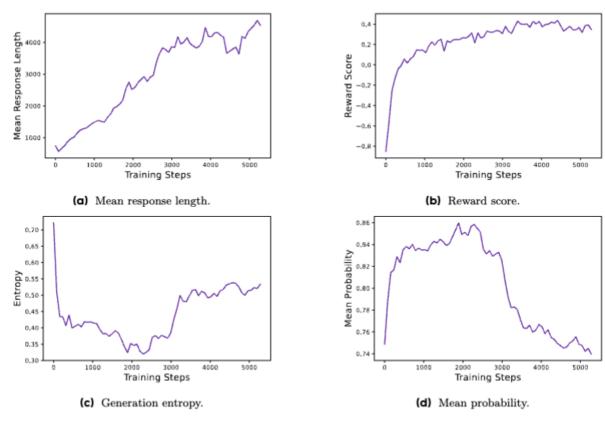


Figure 7 The metric curves of response length, reward score, generation entropy, and the mean probability of **DAPO**, which show the dynamics of RL training and serve as essential monitoring indicators to identify potential issues.

- 길이 증가는 모델에게 더 넓은 탐색 공간을 제공하여 더 복잡한 추론 행동을 샘플링하고 훈련을 통해 점진적으로 강화할 수 있도록 함
- 보상 증가 추세는 비교적 안정적이며 실험 설정 조 정으로 인해 크게 변동하거나 감소하지 않음
- 모델의 엔트로피는 적절한 범위 내에서 유지되어 야 함
 - 엔트로피가 지나치게 낮으면 확률 분포가 지 나치게 날카로워져 탐색 능력을 잃음
 - 반대로 엔트로피가 지나치게 높으면 횡설수 설 및 반복 생성과 같은 과도한 탐색 문제가 발생

S^2R : Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning

Ruotian Ma^{1*}, Peisong Wang^{2*}, Cheng Liu¹, Xingyan Liu¹,

Jiaqi Chen³, Bang Zhang¹, Xin Zhou⁴, Nan Du^{1†}, Jia Li ^{5†}

¹Tencent ²Tsinghua University

³The University of Hong Kong ⁴Fudan University

⁵The Hong Kong University of Science and Technology (Guangzhou)

ruotianma@tencent.com, wps22@mails.tsinghua.edu.cn

S2R

- 추론 과정에서 모델이 자체 검증하고 자체 수정하도록 학습시켜 LLM 추론을 향상시키는
 효율적인 프레임워크
- 먼저 신중하게 선별된 데이터에 대한 지도 학습을 통해 반복적인 자체 검증 및 자체 수정 행동으로 LLM을 초기화
- 결과 수준 및 프로세스 수준 강화 학습을 통해 자체 검증 및 자체 수정 기술을 더욱 강화
- ⇒ 스스로 생성한 틀린 오답에 대해 스스로 수정할 수 있도록 유도
- ⇒ S2R은 **자기 검증 및 자기 수정이라는 두 가지 중요한 사고 기술을 반복적으로 채택**하여 LLM이 깊이 생각하도록 가르치는 데 중점

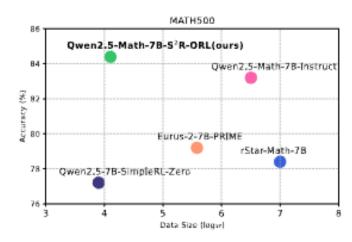
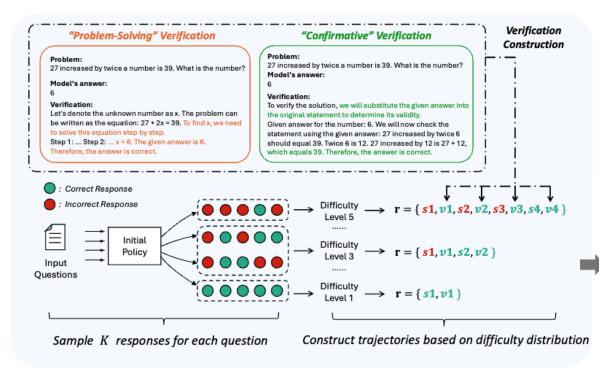


Figure 1: The data efficiency of S²R compared to competitive baseline methods.

Step0: Data Construction



Stage 0: Data Construction

Solve, Verify, End

- Input question에 대해 K번의 응답 생성을 통해 정답여부를 판단
- ⇒ 많이 맞춘 input은 난이도가 쉬운, 반대는 어려운 것으로 간주
- 난이도에 따라 추론 궤적을 다양화
- ⇒ 쉬운 것은 바로 s1, v1, end 되도록 / 어려운 것은 실패와 검증을 반복하도록 구성
- 예시: s1, v1, s2, v2, s3, v3, end인경우
- ⇒ s1, s2는 모델이 생성한 틀린 answer
- ⇒v1, v2는 GPT-4의 verification / s3는 고품질 정답 텍스트

Step0: Data Construction

LLM의 목표 출력 (모델이 모방해야 할 행동 시퀀스 y):

[s1] (첫 번째 solve 행동 - 오답)

"이 문제를 풀어보겠습니다. 처음에 사과는 10개 있었습니다. 당신이 3개를 먹었으므로, 10+3=13개입니다. 친구가 5개를 더 주었으니, 13+5=18개입니다. 따라서 사과의 총 개수는 18개입니다."

[v1] (첫 번째 verify 행동 - s_1 이 오답임을 정확히 판단)

"잠깐, 제 풀이를 다시 확인해 보겠습니다.

검증: 제시된 답은 18개입니다. 문제에서 '3개를 먹었다'는 것은 사과를 빼는 행동을 의미합니다. 만약 10개에서 3개를 먹었다면 10-3=7개가 됩니다. 그 후에 친구가 5개를 더 주었다면 7+5=12개가 되어야 합니다. 18이라는 계산은 3개를 먹은 것을 잘못 더하기로 계산한 것입니다.

따라서, 이 답은 incorrect입니다. 다시 시도해 보겠습니다."

[s2] (두 번째 solve 행동 - 오답, 첫 번째 오류는 수정했으나 새로운 오류 발생)

"다시 풀어보겠습니다. 처음에 사과는 10개 있었습니다. 당신이 3개를 먹었으니, 10-3=7개입니다. 친구가 5개를 더 주었으므로, $7\times 5=35$ 개입니다. 따라서 사과의 총 개수는 35개입니다."

[v2] (두 번째 verify 행동 - s_2 가 오답임을 정확히 판단)

"잠깐, 제 풀이를 다시 확인해 보겠습니다.

검증: 제시된 답은 35개입니다. 이전 단계에서 10-3=7까지는 옳았습니다. 그러나 '친구가 5개를 더 주었다'는 것은 5를 더하는 것을 의미하지 곱하는 것을 의미하지 않습니다. 7+5=12가되어야 합니다.

따라서, 이 답은 incorrect입니다. 다시 시도해 보겠습니다."

[s3] (세 번째 solve 행동 - 정답)

"세 번째 시도입니다. 처음에 사과는 10개 있었습니다. 당신이 3개를 먹었으므로, 10-3=7개 입니다. 친구가 5개를 더 주었으니, 7+5=12개입니다. 따라서 사과의 총 개수는 12개입니다."

[v3] (세 번째 verify 행동 - s_3 이 정답임을 정확히 판단)

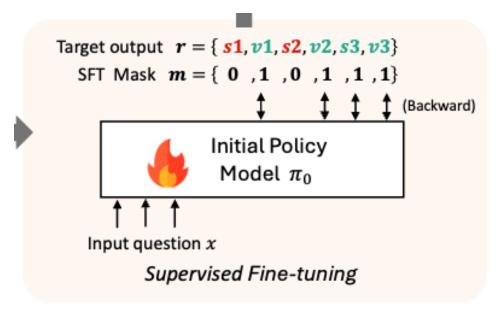
"잠깐, 제 풀이를 다시 확인해 보겠습니다.

검증: 제시된 답은 12개입니다. 처음에 10개에서 3개를 먹었으므로 10-3=7개가 남습니다. 친구가 5개를 더 주었으므로 7+5=12개가 됩니다. 이 계산은 문제의 조건에 정확히 부합하며, 논리적으로 타당합니다.

따라서, 이 답은 correct입니다."

[<end>] (추론 종료)

Step1: SFT

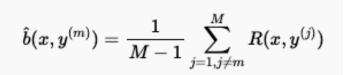


Stage 1: Behavior Initialization

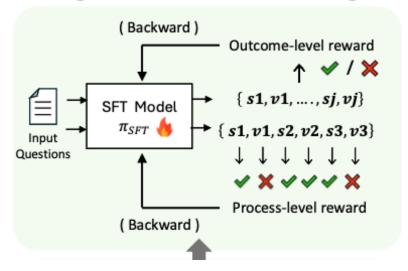
일종의 cold start: Masked SFT

- 모델이 초기에 틀리게 생성했던 부분은 loss 계산하지 않음
- GPT-4가 verification한 부분과 행동 수정을 통해 올바르게 정답을 맞춘 부분만 loss를 계산해서 SFT
- ⇒ Verification과 self correction의 반복을 배우는 효과
- 해당 모델은 Behavior Init 모델이라고 명명

Step2: Two-way RL



Stage 2: Reinforcement Learning



Outcome-level RLOO

GRPO와 유사하지만, 해당 rollout 외의 rollout들의 보상을 평균내어 비교하는 방식으로 advantage를 계산

- 최종 solution이 정답을 맞추면 1, 아니면 -1로 보상

Process-level GRPO

- solve 행동에 대한 보상:

생성된 solution이 실제 정답과 일치하면 1점, 틀리면 -1점

- verify 행동에 대한 보상:

모델의 자체 검증이 직전의 solve 행동의 실제 정답 여부를 정확하게 판단하면 1점, 틀리면 -1점

Main Experiments

Model	MATH 500	AIME 2024	AMC 2023	College Math	Olympiad Bench	GSM8K	GaokaoEn 2023	Average
Frontier LLMs								
GPT-4o	76.6	9.3	47.5	48.5	43.3	92.9	67.5	55.1
GPT-o1-preview	85.5	44.6	90.0	-	-			
GPT-o1-mini	90.0	56.7	95.0	57.8	65.3	94.8	78.4	76.9
Top-tier Open-source Reasoning LLMs								
NuminaMath-72B-CoT	64.0	3.3	70.0	39.7	32.6	90.8	58.4	51.3
LLaMA3.1-70B-Instruct	65.4	23.3	50.0	42.5	27.7	94.1	54.0	51.0
Qwen2.5-Math-72B-Instruct	85.6	30.0	70.0	49.5	49.0	95.9	71.9	64.6
General Model: Llama-3.1-8B-Instruct								
Llama-3.1-8B-Instruct	48.0	6.7	30.0	30.8	15.6	84.4	41.0	36.6
Llama-3.1-8B-Instruct + Original Solution SFT		3.3	7.5	22.0	8.0	58.7	28.3	22.7
Llama-3.1-8B-Instruct + Long CoT SFT	51.4	6.7	27.5	36.3	<u>19.0</u>	<u>87.0</u>	48.3	<u>39.5</u>
Llama-3.1-8B-S ² R-BI (ours)	49.6 53.6	10.0	20.0	33.3	17.6	85.3	41.0	36.7
Llama-3.1-8B-S ² R-PRL (ours)		6.7	25.0	33.7	18.5	86.7	43.1	38.2
Llama-3.1-8B-S ² R-ORL (ours)	55.0	<u>6.7</u>	32.5	34.7	20.7	87.3	<u>45.2</u>	40.3
General Model: Qwen2-7B-Instruct								
Qwen2-7B-Instruct	51.2	3.3	30.0	18.2	19.1	86.4	39.0	35.3
Qwen2-7B-Instruct + Original Solution SFT	41.2	0.0	25.0	30.1	10.2	74.5	34.8	30.8
Qwen2-7B-Instruct + Long CoT SFT	60.4	<u>6.7</u>	32.5	36.3	23.4	81.2	53.5	42.0
Qwen2-7B-S ² R-BI (ours)	61.2	3.3	27.5	41.1	27.1	87.4	49.1	42.4
Qwen2-7B-S ² R-PRL (ours)	65.4	6.7	35.0	36.7	27.0	89.0	<u>49.9</u>	44.2
Qwen2-7B-S ² R-ORL (ours)	<u>64.8</u>	3.3	42.5	34.7	26.2	86.4	50.9	<u>44.1</u>
Math-Specialized Model: Qwen2.5-Math-7B								
Qwen2.5-Math-7B	51.0	16.7	45.0	21.5	16.7	58.3	39.7	35.6
Qwen2.5-Math-7B-Instruct	83.2	13.3	72.5	47.0	40.4	95.6	67.5	59.9
Eurus-2-7B-PRIME (Cui et al., 2025)	79.2	<u>26.7</u>	57.8	45.0	42.1	88.0	57.1	56.6
rStar-Math-7B ² (Guan et al., 2025)	78.4	<u>26.7</u>	47.5	52.5	47.1	89.7	65.7	58.2
Qwen2.5-7B-SimpleRL(Zeng et al., 2025)	82.4	<u>26.7</u>	62.5	-	43.3	-	-	-
Qwen2.5-Math-7B + Original Solution SFT	58.0	6.7	42.5	35.8	20.0	79.5	51.9	42.1
Qwen2.5-Math-7B + Long CoT SFT	80.2 81.6	16.7	60.0	<u>49.6</u>	42.1	91.4	69.1	58.4
Qwen2.5-Math-7B-S ² R-BI (ours)		23.3	60.0	43.9	44.4	91.9	70.1	59.3
Qwen2.5-Math-7B-S ² R-PRL (ours)		26.7	70.0	43.8	46.4	93.2	70.4	62.0
Qwen2.5-Math-7B-S ² R-ORL (ours)	84.4	23.3	77.5	43.8	44.9	92.9	<u>70.1</u>	62.4

Table 2: The performance of S^2R and other strong baselines on the most challenging math benchmarks is presented. **BI** refers to the behavior-initialized models through supervised fine-tuning, **ORL** denotes models trained with outcome-level RL, and **PRL** refers to models trained with process-level RL. The highest results are highlighted in **bold** and the second-best results are marked with underline.

Stage 1: Behavior Initia	Stage 1: Behavior Initialization								
Base Model	Source	# Training Data							
Llama-3.1-8B-Instruct	MATH	4614							
Qwen2-7B-Instruct	MATH	4366							
Qwen2.5-Math-7B	MATH	3111							
Stage 2: Reinforcement Learning									
Stage 2: Reinforcement	Learning								
Stage 2: Reinforcement Base Model	Learning Source	# Training Data							
		# Training Data 9601							
Base Model	Source								

Table 1: Training data statistics.

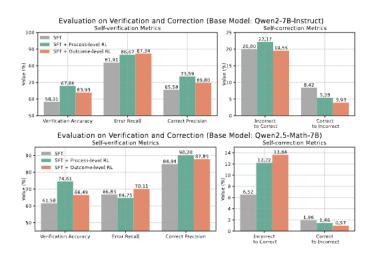


Figure 3: Evaluation on verification and correction.

- Stage 1의 SFT만으로도 좋은 성능
- ⇒ QwQ에서 추출한 Long COT를 활용한 SFT보다 효과적
- 모델이 틀린 답변을 수정하는 능력이 RL 훈련 후 크게 향상
- ⇒ 모델이 올바른 답변을 실수로 변경하는 비율도 현저히 감소
- Process Level보다 Outcome Level RL이 더 효과적임
- ⇒ 결과 수준의 RL이 중간 정확성을 강조하지 않고 탐색할 수 있도록 하여 장

Self Correction Arise in Different Difficulty Problem

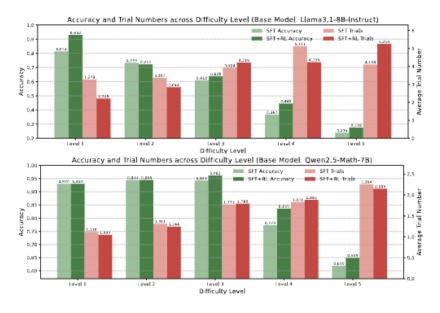


Figure 4: The accuracy and average trial number of different models across difficulty levels on MATH500.

- 모든 난이도 레벨에서 SFT+RL 모델(어두운 녹색)이 SFT 모델(밝은 녹색) 보다 높은 정확도
- 특히, 난이도가 높아질수록 SFT 모델의 정확도가 급격히 떨어지지만, SFT+RL은 이를 더 효과적으로 방어하며 어려운 문제에서도 성능을 개선
- 난이도가 높은 문제(Level 3, 4, 5)에서는 SFT+RL이 SFT보다 더 많은 시 도를 함으로써 정확도를 개선
- ⇒ 이는 RL이 모델이 더 어려운 문제에 대해 더 깊게 생각하고 필요한 경우 여러 번의 자기 검증 및 수정을 시도하도록 장려했음을 의미

모델은 난이도에 따라 추론 노력을 동적으로 할당하는 방법을 배우고, RL을 통해 더 어려운 문제에 대해 더 많은 자기 검증 및 수정을 시도

Expansion to Offline RL

	Datasets							
Model	MATH 500	AIME 2024	AMC 2023	College Math	Olympiad Bench	GSM8K	GaokaoEn 2023	Average
Qwen2-7B-Instruct	51.2	3.3	30.0	18.2	19.1	86.4	39.0	35.3
Qwen2-7B-S ² R-BI (ours)		3.3	27.5	41.1	27.1	87.4	49.1	42.4
Qwen2-7B-S ² R-PRL (ours)	65.4	6.7	35.0	36.7	27.0	89.0	<u>49.9</u>	44.2
Qwen2-7B-S ² R-ORL (ours)		3.3	42.5	34.7	26.2	86.4	50.9	44.1
Qwen2-7B-Instruct-S ² R-PRL-offline (ours)		10.0	32.5	40.2	26.5	<u>87.6</u>	50.4	44.1
Qwen2-7B-Instruct-S ² R-ORL-offline (ours)	61.0	<u>6.7</u>	<u>37.5</u>	<u>40.5</u>	27.3	87.4	49.6	44.3
Qwen2.5-Math-7B	51.0	16.7	45.0	21.5	16.7	58.3	39.7	35.6
Qwen2.5-Math-7B-S ² R-BI (ours)	81.6	23.3	60.0	43.9	44.4	91.9	70.1	59.3
Qwen2.5-Math-7B-S ² R-PRL (ours)	83.4	26.7	<u>70.0</u>	43.8	<u>46.4</u>	93.2	<u>70.4</u>	62.0
Qwen2.5-Math-7B-S ² R-ORL (ours)	84.4	23.3	77.5	43.8	44.9	92.9	70.1	62.4
Qwen2.5-Math-7B-S ² R-PRL-offline (ours)		23.3	62.5	50.0	46.7	92.9	72.2	61.6
Qwen2.5-Math-7B-S ² R-ORL-offline (ours)	82.0	20.0	67.5	<u>49.8</u>	45.8	92.6	<u>70.4</u>	61.2

Table 5: Comparison of S²R using online and offline RL training.

- online RL과 달리 offline RL에서는 process-level 이 outcome-level 보다 성능이 뛰어남
- ⇒ 모델이 동적 궤적을 자유롭게 탐색할 수 있도록 하는 데 탁월한 outcome-level RL은 online 파라미터 업데이트 중에 즉석에서 샘플링하 는데 더 적합
- ⇒ 중간 단계에 대한 정확한 baseline 추정이 필요한 process-level RL은 더 큰 규모의 데이터 샘플링으로 더 정확한 baseline 추정치를 제공할 수 있는 offline 궤적 샘플링의 이점
- Offline RL은 대부분의 벤치마크에서 성능을 일관되게 향상시키고 online RL과 비교 가능한 결과를 달성