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1.INTRODUCTION

Continual Learning

A2tol Xi=0ll 2k 22 HIOIEILE taskE S22 S A= SE
*  MZE2 OIOIES st&ok= 2 20 OtLIZE JIE8| XIAIE ZICHst HZEGHOE &

Task 1 Task 2 Task 3
@E @O @ D
Train Train Tl";in
A4 N . ¥
CIL Model CIL Model CIL Model

N o b

c-{;‘_,jxf;j 4 (e’e < oted

\c:;/ \d/ \.-—;/
Test Set 1 Test Set 2 Test Set 3

@ PG
0 @ @@@

2%, Natural Language Processing
S5 g Artificial Intelligence

3/30



2%, Natural Language Processing
& Artificial Intelligence

1.INTRODUCTION
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2. MOTIVATION

Preliminary Experiments
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2. MOTIVATION

Preliminary Experiments
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3. SPURIOUS FORGETTING

Spurious Forgetting
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3. SPURIOUS FORGETTING
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3. SPURIOUS FORGETTING

Analysis
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Analysis

Model Weight
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4. SOLUTION

Existing Techniques for Forgetting
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Existing Techniques for Forgetting
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4. SOLUTION

Existing Techniques for Forgetting
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4. SOLUTION

Existing Techniques for Forgetting
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4. SOLUTION

Existing Techniques for Forgetting
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Freezing Bottom Layers
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5. CONCLUSION

Conclusion
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1.INTRODUCTION

Model Mixture for Continual Learning
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1.INTRODUCTION

Model Merging
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2. PROPOSED METHOD

Recurrent Knowledge Identification
and Fusion (Recurrent-KIF)
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2. PROPOSED METHOD

Inner Learner with Knowledge Identification
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Outer Learner with Knowledge Fusion
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Setting
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3. EXPERIMENT

Main Results

Recurrent-KIF= Catastrophic Forgeﬁingi!l Knowledge Transfer= SA0l siZ&
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LoRAReplay 68.8 -11.7 70.9 -15.4
EWC* (Kirkpatrick et al 2017) | 50.3 - 45.1 -
L2P* (Wang et al  2022h) 60.7 - 56.1 -16.3
LFPT5* (Qin and Joty, 2021) 72.7 - 69.2 -12.8
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Recurrent-KIF (ours) 78.4 -2.8 77.8 -3.6
MTL 80.3 - 8.8 .
SAPT-LoRA (ZYhao et al 2(124) - - 82.0 -1.3 26 / 30
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Main Results
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3. EXPERIMENT

Ablation Study

Effect of Dynamic Importance Estimations (-DIE)

- &S0l 3H SIEGH0 1HAH taskel SRE EXE SHOE HHI0IEE ERd X

Method OP BWT

Effect of Inportance-Based Binary Mask Strategy in Knowledge Fusion ettt 7:2 i:
- DIE 74. -

. K= H} QhAZI ~KI 523 -21.5

KI EQE jII_ I:”'_ I‘”j-l +GM 72.1 112

. +GM:OIAZ [HA EQE JIES A Ca 758 43

« +Adaptive : OIAZ [HAl SRT &E A
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4. CONCLUSION

Conclusion

OIX taskOll CiSt OIZHOIEIC] S8 E SHOE F£F6l= continual learning Za2 1391
Recurrent Knowledge Identification and Fusion (Recurrent-KIF)= Higte

« M=ZE2 XIAE AE6l= Inner Learner@t ME2 X4 2 1HH K210 MM g2 2i2I6t= Quter LearnerE BI2XOZ Al

=/ —==
6101, Zlztole sR= EX0 JIEst A2 HSd s&t MEE JisotHl &

« &AYXNOE Catastrophic Forgetting 2t2l2F Knowledge Transfer s= SLHzIE E¢
. SHH|

« 1PA toskOll CHet SRE 2 E HIZ2IHAM JEEL D] HZ0 HIOIE S8 K20l /= 2tE0 M= HE0] Mot

- IIHOIEZE S0 BE| 2258 82192 Qo 220 == HIE St

29 / 30



257 Natural Language Processing
& Artificial Intelligence

Thank you
Q&A

30/ 30



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

