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Prompt: Explain what artificial intelligence is.



LLM의 현주소: Autoregressive Model (ARM)

현존하는 대부분의 LLM(GPT, LLaMA 등)은 자기회귀 모델(ARM), 즉 ＇Causal Language Modeling' 기반으로 수행

Question: "LLM의 핵심 역량은 오직 ‘Auto-Regressive Modeling' 패러다임을 통해서만 달성할 수 있는가?"

Answer: "아니다.”

LLM의 핵심 속성은 ARM 고유의 것이 아니라, 더 상위 개념인 Generative Modeling Principles 비롯

: 트랜스포머 아키텍처, 데이터/모델 크기, 피셔 일관성(Fisher consistency) 등의 상호작용 결과임

: ICL, 지시 사항 준수 등은 ARM만의 전유물이 아님

ARM 패러다임의 내재적 한계 - Reversal Curse (Reversal Reasoning 작업에는 구조적으로 취약)

Introduction
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LLaDA - Diffusion 모델을 통한 새로운 접근

목표: ARM이 아닌 생성 모델링 원칙(확산 모델)을 통해 LLM의 핵심 역량이 발현될 수 있음을 증명하고자 함

LLaDA의 동작 원리

 - Forward Process (Data Masking): 원본 데이터(문장)에 점진적으로 마스크(noise)를 추가

 - Reverse Process (Generation): 트랜스포머 기반의 Mask Predictor가 마스킹된 토큰을 예측(복원)하도록 학습

주요 특징:

1. Bidirectional Dependencies를 자연스럽게 모델링

2. Variational Lower Bound, VLB을 최적화하는 원칙적인(principled) 생성 접근 방식을 따름
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Training

LLaDA

Overview



Training

Pre-training (1) 

Transformer를 Mask Predictor로 쓰자

: Causal Mask è Non-Causal Mask

- 기존 ARM 모델과 달리, 예측 시 전체 입력을 참조

vs LLaMA3 8B

- LLaMA3: GQA / LLaDA: MHA (LLaDA는 KV Caching 호환 x)

- MHA사용으로 늘어난 파라미터는 FFN 차원 축소를 통해 사이즈 맞춤

Data 

- Online Corpora: 고품질 코드, 수학, 다국어 데이터 2.3T

LLaDA



Training

Pre-training (2) 

Masking & Objective

- [0, 1] 범위에서 마스킹 확률 t를 무작위 샘플링

- 원본 시퀀스 x_0의 각 토큰을 독립적으로 t 확률로 마스킹하여 x_t 생성

- 고정 길이 (99%): 4096 토큰

- 가변 길이 (1%): [1, 4096] 범위에서 랜덤 샘플링

Hyperparams

- AdamW (Weight Decay: 0.1)

- 배치 크기: 1280 (Global) / GPU당 4 (Local)

- Warmup-Stable-Decay

- Warmup (2k iter): 0 è 4e-4

- Stable 1 (1.2T tok): 4e-4

- Decay 1 (0.8T tok): 1e-4

- Final Decay (0.3T tok): 1e-5

LLaDA



Training

SFT

Instruction Following 

: SFT를 사전 학습(PT)과 완벽하게 호환되는 방식으로 구현

- 프롬프트 (p_0): 변경 없음 (마스킹 X)

- 응답 (r_0): PT와 동일하게 t 확률로 독립적 토큰 마스킹

- 모델 입력: p_0와 r_t를 연결 ([p_0, r_t])

- Loss 계산: r_t 부분의 마스킹된 토큰에 대해서만 계산

LLaDA



Training

SFT

Data

- 450만 개의 쌍[Code, Mathematics, Instruction-following 등 다중 도메인]

Batch & EOS

: prompt+response의 끝에 |EOS| 토큰을 추가하여 길이 통일

- 학습 시: 일반 토큰으로 취급하여 학습 (그냥 PAD 대신에 쓴다는말ㅇㅇ)

- 추론 시: |EOS|를 샘플링하면 응답 생성 중단

- 모델이 응답 길이를 자동으로 제어하는 능력을 학습

Hyperparams

- Epochs: 3

- LR: 2.5e-5 (Max) [Warm-up: 50 iter è 유지 è 마지막 10% 선형 감소]

- Weight Decay: 0.1

- Batch : 256 (Global) / GPU당 2 (Local)

LLaDA



Inference

Predicting (1) LLaDA의 추론 방식: Non-Autoregressive 

- AR: left-to-right) 한 토큰씩 순차적 생성

- LLaDA: 확산(Diffusion) 방식 채택 [동시 예측이 핵심]

추론 과정: Reverse Generation

시작 (T=1): 프롬프트(p_0) + 완전히 마스킹된 응답 [M]...[M]

중간 (t → s): [p_0, r_t] (일부 마스킹된 응답) è 마스크 예측기로 모든 [M] 토큰 동시 예측

종료 (T=0): [p_0, r_0] (완전한 응답)

Core Parameter

- 총 샘플링 단계 (Steps): 추론 속도(효율성) vs 샘플 품질 간의 트레이드오프 발생

- 생성 길이 (Length): 샘플링 시작 시 생성할 [M]의 개수 (예: 256, 512...)

LLaDA



Predicting (2) 핵심 전략: Remasking for Efficiency

- t시점에서 예측한 토큰을 s시점에 모두 믿어버리면(채워 넣으면), diffusion의 transition이 

깨지고 샘플링이 불안정

- t è s 단계로 이동 시

1. t시점의 모든 [M]을 예측

2. 예측된 토큰 중 일부 비율을 다시 마스킹하여 r_s를 생성

Low-Confidence

원칙적으로 순수하게 무작위로 다시 마스킹해야 함

But, annealing 기법에서 영감을 받아 Low-Confidence Remasking 수행

모델이 예측한 토큰들 중 confidence가 낮은 토큰을 골라 특정 비율만큼 우선적으로 리마스킹

Inference
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Remasking Algorithm 

LLaDA

Inference

역과정은 t=1 (전부 마스크)에서 출발해 t=0 (최종응답)으로 가는 과정

실제로는 연속 시간을 여러 단계로 나눠서(discretize) 진행

: 사용자가 N을 정하면, 1.0에서 0.0까지를 N개의 균일한 간격으로 나눔

t (Time) = 현재 상태의 마스킹 비율

s (Step) = 다음 단계의 목표 마스킹 비율

N=4로 정하면 

- t는 1.0 è 0.75 è 0.5 è 0.25 è 0.0

- s는 0.75 è 0.5 è 0.25 è 0.0 è 완료



Sampling Strategy for Flexibility

Default: 완전히 마스킹된 상태에서 시작 (parallel decoding)

(a) AR - LLaDA도 기존 LLM처럼 동작 가능

(b) Block Diffusion - 블록 간 Autoregressive

(c) Block Diffusion - Semi-autoregressive

Inference
LLaDA



Benchmark Results of Pre-trained LLMs.

Experiments Results (1)
LLaDA



Benchmark Results of Post-trained LLMs.

Experiments Results (2)
LLaDA



Reversal Reasoning and Analyses

Reversal Curse

: ARMs가 "A는 B이다"와 같은 사실을 학습할 때 "B는 A이다"라는 역방향 사실을 추론하는 데 어려움을 겪음

: ARM은 L2R 방식으로 처리하고 생성하는 본질적인 특성으로, 입력 시퀀스의 방향성에 강한 inductive bias 가짐

평가 프로토콜 (Poem Completion Task)

: LLaDA의 Reversal Reasoning 능력을 정량적으로 평가하기 위해 Allen-Zhu and Li [35]의 프로토콜을 차용

: 496쌍의 유명한 중국 시 문장으로 구성된 데이터셋을 구축

Forward Task: 다음 줄을 생성. Reversal Task: 이전 줄을 생성

LLaDA



Reversal Reasoning and Analyses
LLaDA

LLaDA는 ....

- Forward 성능은 ARM들보다 낮지만 Reversal 성능에서 큰 우위 → 전체적으로 더 균형 잡힌 처리 가능

- masked diffusion의 훈련으로 토큰을 균등하게 취급하여 방향성 편향이 적음



LLaDA

Conclusion

8B 규모의 Diffusion 언어 모델을 최초로 제안

기존 ARM의 한계를 극복하고 언어 모델링의 새로운 패러다임 제시

Bidirectional Modeling & Enhanced Robustness (e.g., Reversal Curse)

Limitations

- 강화 학습을 통한 정렬 과정을 거치지 않음

- 확산 샘플링 알고리즘이 아직 예비 단계

- 계산 제약으로 ARM과 동일한 데이터/규모로 직접 비교 X

Future Work

- 모델 및 데이터 확장: SOTA ARM 모델 규모로 확장 필요

- 다중 모드 (Multi-modal) 데이터 처리 능력 탐구

- RL 기반 정렬 적용을 통한 성능 및 인간 의도 일치성 개선





기존 MDM의 아키텍처 한계

- 현재까지의 MDM 연구는 대부분 Dense한 트랜스포머 백본에 의존

- 대조적으로, AR 모델 분야에서는 Sparse Mixture-of-Experts 아키텍처가 널리 검증됨

MDM을 Sparse MoE 아키텍처로 scratch부터 사전 학습시킨 선행 연구가 부재è 효율성과 성능을 모두 잡자

어떻게? 약 20T(조) 토큰 데이터로 학습된 MDM과 Sparse MoE 아키텍처를 가진 모델 학습

1. 확산 언어 모델(MDM) 중 SOTA 달성

   : 총 7B 파라미터 중 단 1.4B 개의 활성 파라미터만 사용, 적은 추론 비용으로도 이전의 8B Dense MDM 의 성능을 능가

2. 타 모델과의 경쟁력 입증

LLaDA-MOE

Introduction



Architecture

Overview

LLaDA-MOE

LLaDA-MoE는 정규화를 위해 아래 항목 사용

1. RMSNorm

2. Activation Func: SwiGLU

3. ROPE

4. MHA 내에 QK-layernorm 



Architecture
LLaDA-MOE

MoE Routing.

- 현재까지의 MDM 연구는 대부분 Dense한 트랜스포머 백본에 의존

- 대조적으로, AR 모델 분야에서는 Sparse Mixture-of-Experts 아키텍처가 널리 검증됨

Auxiliary Losses.

1) Load-Balancing Loss: Expertes가 공평하게 나누어 받도록 보장

2) Z-Loss: 라우터가 출력하는 로짓(z_t)값 자체가 너무 커지는 것을 방지하여 학습을 안정화

N. 전문가의 수
f_i. i번째 전문가가 모든 토큰에 걸쳐 선택된 빈도
P_i     i번째 전문가에게 할당된 평균 라우팅 확률

T: number of tokens
z_{t,j}: Router(h_t) 가 t번째 토큰에 대해 j번째 E에게 부여한 logit



Training Pipeline
LLaDA-MOE

Pretrain Stage 

PT Stage 1

- 대규모 혼합 텍스트 코퍼스 (10T Tokens)

PT Stage 2

- sampling reweighted to increase the fraction of mathematics 

and code (+10T)



Pipeline

Annealing Stage 

Annealing Stage 1

- 500B tokens of high-quality text

- 사전 학습 2단계의 최고 성능 체크포인트 사용

Annealing Stage 2

- 500B토큰

- RoPE Base 10,000에서 50,000으로 증가

- 컨텍스트 길이 4k에서 8k로 확장

LLaDA-MOE

SFT Stage

- high-quality question–answer pairs

- 다중 턴 대화(multi-turn dialogs)의 경우, 특정 턴의 응답에만 마스킹 커널을 적용

- SFT 중 샘플은 대부분 4k보다 짧아 최대 4k 토큰으로 제한하여 학습 (불필요한 |EOS| 토큰 생성 방지)



Training Pipeline
LLaDA-MOE

Forward Process 

: 마스크가 추가된 입력 y_t를 보고 원본 토큰 y^i를 예측하도록 모델을 학습 (LLaDA와 동일)

Train-Test Discrepancy

- 실제 테스트 시에는 4k보다 훨씬 짧거나 다양한 길이의 입력이 들어옴

Variable-Length Training

- 99%: 기존과 동일하게 고정된 4k 컨텍스트 사용

- 1%의 : 8에서 4096 사이의 무작위 길이를 샘플링하여, 입력을 해당 길이로 truncate



Training Pipeline
LLaDA-MOE

Supervised Fine-tuning

: 답변 부분만 확률 t에 따라 마스킹하여, 원본 토큰 y^i를 예측하도록 모델을 학습 (LLaDA와 동일)

|EOS| 토큰 학습

        : 문장 끝을 알리는 |EOS| 토큰도 답변의 일부로 취급하여 함께 마스킹하고 손실 계산에 포함

다중 턴 대화

        : [q1, a1, q2]까지를 입력으로 보고, a2를 답변으로 취급하여 동일하게 학습

4k 컨텍스트 제한

        : 어닐링 2단계(Annealing Stage 2) 동안 4k에서 8k로 확장되지만, SFT는 4k로 제한



Inference
LLaDA-MOE

추론은 모델이 완전히 마스크된 상태([M][M]...[M])에서 시작하여 점차 [M]을 실제 토큰으로 채워 나감

Train-Test Discrepancy

- 실제 테스트 시에는 4k보다 훨씬 짧거나 다양한 길이의 입력이 들어옴

Generation Strategy

: LLaDA와 동일한 전략 사용 가능



Experiments Results (base)
LLaDA-MOE

Knowledge, Reasoning, Coding, Math, Agent 등에 대한 벤치마크 평가 수행

: Semi-Autoregressive로 평가

: Generation length 1024

: block size 64



Experiments Results (Instruct)
LLaDA-MOE

Knowledge, Reasoning, Coding, Math, Agent 등에 대한 벤치마크 평가 수행

: Semi-Autoregressive로 평가

: Generation length 1024

: block size 64



Q & A


