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OctoThinker: Mid-training Incentivizes Reinforcement Learning Scaling
- Introduction
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OctoThinker: Mid-training Incentivizes Reinforcement Learning Scaling

Preliminaries

MATH500 GSMBK

OlympiadBench AMC23
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Figure 2 | Training dynamics comparison (downstream performance and the average length of correct
responses) between Llama-3.2-3B and Qwen2.5-3B. The dashed line indicates the few-shot evaluation
performance and average length of correct responses of the corresponding base models.

*Zaro AL refers to R1-Zero style AL training starting from a baselanguage model without SFT,
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Figure 1 | Our strategic mid-training incentivizes Llama’s RL scaling, matching QwenZ2.5 performance.
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OctoThinker: Mid-training Incentivizes Reinforcement Learning Scaling
- Key Factors through Controllable Mid-training

Math Web QA Data
Corpora
Finemath-
4plus Long-CoT QA
MegaMath-
Web-Pro Short-CoT QA

Figure 3 | Potential factors in mid-training that could impact the post-training stage.
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None

Mid-training
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20B tokens

100B tokens

Table 1 | Statistics and Types of different datasets used in our experiments. *We use the
TULU3-sft-personna-instruction-following subset.

Dataset Type # Tokens (B)
FineMath-4plus (Allal et al., 2025) 9.57
MegaMath-Web-Pro (Zhou et al, 2025) Math Web Documents 13.00
MegaMath-Web-Pro-Max (Ours) 73.80
MegaMath-QA (Zhou et al., 2025) QA (Short-CoT) 5.94
OpenR1-Math-Z20K (Hugginglace, 2025) | QA (Long-CoT) 1.05
TULU3-sft®* (Lambert et al., 2024a) 0.01
WildChat (Zhao et al., 2024) General Instruction Following 0.29
UltraChat-ZZ0K (Ding et al., 2023a) 0.51
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OctoThinker: Mid-training Incentivizes Reinforcement Learning Scaling
- Key Factors through Controllable Mid-training (Web corpora® AIE32 Q| d& =M)
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Figure 5 | The effect of different math web corpora during mid-training. We performed mid-training
on each corpus with a 20B-token training budget.
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OctoThinker: Mid-training Incentivizes Reinforcement Learning Scaling
- Key Factors through Controllable Mid-training (CoT HIO|E{E AlE23HE Hfe] H5 &A)

MATH500 GSMBK OlympiadBench AMC23
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Figure 6 | Impact of incorporating CoT data with varying characteristics during mid-training (9:1
mixture ratio). The figure also illustrates performance and average lengths of correct responses for
Llama-3.2-3B-Base and its mid-trained variants for reference (in dashed line with different colors).
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OctoThinker: Mid-training Incentivizes Reinforcement Learning Scaling
- Key Factors through Controllable Mid-training (IF C|O|E| =& of & &gk

MATH500 GSMBK OlympiadBench AMC23
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Figure 7 | Impact of incorporating instruction-following data during mid-training with a mixture of
web, short-CoT and instruction data in a ratio of 89: 10: 1 . The maximum response length is 4,096.
The figure also illustrates performance and average lengths of correct responses for Llama-3.2-3B-Base
and its mid-trained variants for reference (in dashed line with different colors).
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OctoThinker: Mid-training Incentivizes Reinforcement Learning Scaling
- Key Factors through Controllable Mid-training (IF ClIO|E{ Zg {5 AT

MATH500 GSMBK OlympiadBench AMC23
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Figure 8 | Impact of incorporating instruction-following data during mid-training with a mixture of
web, long-CoT and instruction data in a ratio of 89: 10: 1. The maximum response length is 8,192.
The figure also illustrates performance and average lengths of correct responses for Llama-3.2-3B-Base
and its mid-trained variants for reference (in dashed line with different colors).
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OctoThinker: Mid-training Incentivizes Reinforcement Learning Scaling
- Key Factors through Controllable Mid-training (Maximum Response Length &)

b
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OctoThinker: Mid-training Incentivizes Reinforcement Learning Scaling
- Key Factors through Controllable Mid-training (Token budget &)

MATH500 GSMBK OlympiadBench AMC23
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OctoThinker: Mid-training Incentivizes Reinforcement Learning Scaling
- Recipe: OctoThinker-Base - Branching Reasoning Foundations via 2-Stage Mid-training

First Stage
- Stable Stage: Building Strong Reasoning Foundation
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OctoThinker: Mid-training Incentivizes Reinforcement Learning Scaling
- Recipe: OctoThinker-Base - Branching Reasoning Foundations via 2-Stage Mid-training

Second Stage

- Decay Stage: Seeking Perfect Blend for RL Scaling
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Table 5 | Specific data mixture for each branch in the decay stage

(@) Long Branch Mixture (b) Short Branch Mixture (c) Hybrid Branch Mixture

Dataset Weight Dataset Weight Dataset Weight

IDCLM-Easdrinﬁ ) g-fl’g DCLM-Baseline 0.05 DCLM-Baseline 0.05

nstruction rFollowing . - - - .

MegaMath Web-Pro 055 Instruction Following  0.10 Instruction Following  0.10

Open R1 0.15 MegaMath-Web-Pro 0.55 MegaMath-Web-Pro 0.55

AM-DeepSeek-Distilled-40M  0.15 MegaMath-QA 0.025 OpenMathlInstruct2 0.10
OpenMathlnstruct2 0.175 NuminaMath1.5 0.10
NuminaMath1.5 0.10 Open R1 0.10

=& Ho|H:
DCLM-Baseline (1 && AtMStE ZIHA), Instruction

Following (IF O|O|E{), MegaMath-Web-Pro (1 E&E =
ot @ FmA)

=R BIO|E]:
Long CoT: Open R1, AM-DeepSeek-Distilled-40M
Shot CoT: MegaMath-QA, OpenMathinstruct2, NuminaMath1.5
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OctoThinker: Mid-training Incentivizes Reinforcement Learning Scaling
- OctoThinker-Long vs OctoThinker-shorts vs OctoThinker-hybrid
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Figure 12 | The RL training dynamics across different branches for OctoThinker-1B series
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Figure 13 | The RL training dynamics across different branches for OctoThinker-3B series
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Figure 14 | RL training dynamics among Llama-3.2-3B-Base, OctoThinker series and Qwen2.5-Base.
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