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What is Text2SQL?
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• Leveraging structural reasoning capability with LM

- Text2SQL (NL2SQL): 사용자가 자연어로 물어본 질의 (Text)의 맥락과 

의도에 부합하는 근거 답변을 구조화된 자료 DB로부터 추출할 수 

있는 SQL 질의문을 생성하는 과업

- 정확한 Text2SQL 과업을 수행하기 위해서는 다음의 challenge (sub-

task) 수행이 필수적

- Linguistic Complexity and Ambiguity: 자연어로 표현된 사용자 질의 속 

맥락과 의도를 정확하게 파악하는 능력 필요

- Schema Understanding and Representation: 질의에 부합하는 답변을 

생성하기 위해 참조하는 DB의 구조, 내용을 이해할 수 있어야 함. 이러한 

이해는 단일 Table 구조, 내용 이해부터 Table간 관계 파악 등을 포함

- Rare and Complex SQL Operations: 사용자의 질의 해결을 위해 여러 

sub-query를 생성하는 Nested-query, Window function 등과 같이 

복잡한 SQL 구문 생성 능력

- Cross-Domain Generalization: System이 학습하거나 추론하는 DB의 

domain에 관계없이 일반화된 성능을 발휘할 수 있어야 함

Hong, Z., Yuan, Z., Zhang, Q., Chen, H., Dong, J., Huang, F., & Huang, X. (2025). Next-generation database interfaces: A survey of llm-based text-to-sql. IEEE Transactions on Knowledge and Data 

Engineering.



What is Text2SQL?
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• How to resolve these challenges for successful Text2SQL performance?

Shi, L., Tang, Z., Zhang, N., Zhang, X., & Yang, Z. (2025). A survey on employing large language models for text-to-sql tasks. ACM Computing Surveys, 58(2), 1-37.

- TextSQL에서 요구되는 4가지 challenge를 달성하기 위한 다양한 

methodology가 존재할 수 있음

- Basic Structure: SQL과 관련된 기초 지식을 주입 및 전달하는 방법

- Supplementary Knowledge: SQL과 관련된 보조 지식을 주입 및 전달하여 

SQL 구문을 정확하게 생성하게 하는 방법

- Example Selection: ICL 방식으로 SQL 구문을 생성함에 있어서 일반화된 

생성을 도모하는 example sampling 방법

- Reasoning: 정확한 SQL 구문 생성을 위한 fine-grained 추론 과정 정립에 

관한 방법

- 최근 Reasoning trend와 맞물려 Text2SQL 과업에서 LLM, LRM을 

활용하여 어떻게 정확한 SQL 구문을 생성할 것인가와 관련된 연구가 

활발하게 진행중



Clue for applying reasoning in Text2SQL
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Agentic 방식으로 schema linking 과업에서 

reasoning 능력을 향상시켜 Tex2SQL 성능을 

높여보자!

Text2SQL 특화 강화학습을 설계하여 

LLM의 structural reasoning 능력을 향상시켜보자
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LinkAlign
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• Motivations: Schema linking is a critical bottleneck for applying Text2SQL in real-world

- 기존 방법은 Multi-database 상황에서 사용자 의도에 부합하는 SQL 구문을 생성하는 능력이 

부족함을 주장

- 사전 실험에서 Schema linking의 error로 인한 SQL query 생성 실패가 60%에 달함을 확인

Fine-grained Schema linking error analysis

- Error1: 질의와 관련 있는 DB schema 검색 실패

- Error2: 질의와 관련 없는 DB schema를 검색

- Error3: 질의와 관련 없는 Table을 linking

- Error4: 질의와 관련 없는 Column을 linking

← DB linking error가 36.9%에 달하는 만큼 real-world 상황에서 Text2SQL을 

수행하기 위해서는 정확한 Schema linking이 선행되어야 함



LinkAlign - Method
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• Resolving Schema linking bottleneck with Agentic 

Multi-database 상황에 대응하지 

못하는 기존 방법의 erroneous 

schema linking

Retrieval, Isolation, Extraction의 

3가지 step을 Multi-agent를 적용하여 

Multi-database 상황에서 schema 

linking을 수행하는 LinkAlign 제안



LinkAlign - Method
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• Problem Definition

Multi-database 상황에서 Schema linking을 수행하기 위한 problem definition은 아래와 같음

𝐷 = 𝐷1, 𝐷2, … , 𝐷𝑁 : N개의 DB로 구성된 DB의 집합, Multi-database

𝑆 = 𝑆1, 𝑆2, … , 𝑆𝑁 : DB별 meta data를 담은 schema의 집합

- 𝑆𝑖 = {𝑇𝑖, 𝐶𝑖} where

𝑇𝑖 = 𝑇1
𝑖 , 𝑇2

𝑖, … , 𝑇𝑇𝑖
𝑖 : 𝑇𝑖 개의 table로 구성된 Table 집합

𝐶𝑖 = 𝐶1
𝑖, 𝐶2

𝑖 , … , 𝐶 𝐶𝑖
𝑖 : 𝐶𝑖 개의 column으로 구성된 Column 집합

System은 Embedding model 𝐸와 𝐿𝐿𝑀 을 사용해서 사용자 질의 𝑄, schema 집합 𝑆, 보조 정보 𝑐 가 주어질 때

fine-grained schema subset ሖ𝑆를 추출해야 함



LinkAlign - Method

9

• Step one: retrieve potential database schemas (Retrieval)

- 사용자 질의를 해결할 수 있는 DB의 집합 𝑍를 얻을 수 있도록 반복적으로 검색을 수행하는 

단계

- Embedding model 𝐸를 활용해 Top-k schema를 우선 검색

- Top-k schema, Q를 입력으로 받아서 Schema Auditor Agent는 missing schema가 

있는지를 판별

- Missing schema가 존재하는 경우 Query Rewriter Agent는 𝐸가 missing schema를 검색할 

수 있도록 query를 rewriting

- Agent가 missing schema가 없다고 판단할 때 까지 반복적인 검색을 수행하여 질의 해결에 

필요한 DB가 무조건 포함 되도록 하는 greedy한 방법
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• Step one: retrieve potential database schemas (Retrieval)

- 사용자 질의를 해결할 수 있는 DB의 집합 𝑍를 얻을 수 있도록 반복적으로 검색을 수행하는 

단계

- Embedding model 𝐸를 활용해 Top-k schema를 우선 검색

- Top-k schema, Q를 입력으로 받아서 Schema Auditor Agent는 missing schema가 

있는지를 판별

- Missing schema가 존재하는 경우 Query Rewriter Agent는 𝐸가 missing schema를 검색할 

수 있도록 query를 rewriting

- Agent가 missing schema가 없다고 판단할 때 까지 반복적인 검색을 수행하여 질의 해결에 

필요한 DB가 무조건 포함 되도록 하는 greedy한 방법

Step 수행에 따른 Query가 rewrite된 예시 



LinkAlign - Method
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• Step two:  isolate irrelevant schema information (Isolation)

- 사용자 질의와 관련된 DB 집합  𝑍에서 실제 질의를 해결할 수 있는 단 하나의 DB 𝐷𝑡를 추출

- LLM 𝑀으로 구현된 Data Analyst, Database Expert와의 Iterative Debate를 통해 𝐷𝑡를 추출하도록 

함

- Data Analyst Agent는 먼저 𝑍에 속한 Database별 schema와 query를 보고 query와 관련 있는 

Database를 선정

- 선정된 Database는 Database Expert Agent는 해당 DB의 schema를 보고 질의와 관련이 있는지 

검수를 진행

- 사용자가 설정한 turn동안 debate를 진행하며 debate가 종료된 뒤에는 debate를 

summarization하여 concensus를 얻고 해당 concensus를 바탕으로 핵심 Database 𝐷𝑡를 추출



LinkAlign - Method
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• Step three: extract schemas for SQL generation.

- 질의 관련 핵심 DB 𝐷𝑡 에서 실제 질의를 해결할 수 있는 Table, column을 추출하는 작업

- LLM 𝑀으로 구현된 Schema Parser, Data scientist 와의 Iterative Debate를 통해 salient subset 

schema ሖ𝑆෕𝑢 를 추출

- Schema Parser Agent는 Query decomposition, Schema harvesting, Validation의 과정을 통해서 

주어진 schema내에 관련 있는 Table, Column을 확인

- Data scientist Agent는 Schema Parser Agent의 schema linking 결과를 평가하여 linking된 

table, column의 query 관련성 여부를 1, 0으로 이진 분류

- 사용자가 설정한 turn에 도달하면 debate를 종료하고 최종 schema linking 결과를 추출



LinkAlign – Experimental Setups
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• Experimental dataset

Segment Size

Train 9,078

Validation 1,534

{'question_id': 0, 

'db_id': 'california_schools’, 

'question': 'What is the highest eligible free rate for K-12 students in 

the schools in Alameda County?’, 

'evidence': 'Eligible free rate for K-12 = `Free Meal Count (K-12)` / 

`Enrollment (K-12)`’, 

'SQL': "SELECT `Free Meal Count (K-12)` / `Enrollment (K-12)` FROM 

frpm WHERE `County Name` = 'Alameda' ORDER BY (CAST(`Free Meal 

Count (K-12)` AS REAL) / `Enrollment (K-12)`) DESC LIMIT 1", 

'difficulty': 'simple’}

Metadata

BIRD

Segment Size

Train 8,659

Validation 1,034

Spider



LinkAlign– Experimental Setups

14

• Implementation details

- Retrieval: bge-large-en-v1.5

- top-k: 5

- Schema linking (Step 1 ~ Step 3): GLM-4-air

- SQL generation: DeepSeek-V3, DeepSeeek-R1, Qwen-72B 

- DIN-SQL 방법론을 적용해서 SQL generation을 수행

• Metric

Schema Linking Evaluation Metrics

- Locate Accuracy (LA): Schema linking 추론 결과 정확한 

database가 추출되었는지 여부 확인

- Exact Matching (EM): Schema linking 추론 결과가 

GT schema linking결과와 동일한지 여부 확인 (Column까지 

모두 정확하게 맞춘 경우)

- Recall: Schema linking 추론 결과가 GT schema linking 

결과와 overlap 되는 비율 

SQL Query generation Evaluation Metric

- Execution Accuracy (EX)



LinkAlign– Experimental Setups
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• Baselines

DIN-SQL MCS-SQL

- In-context learning 방식으로 Schema linking을 수행

- Schema linking 결과와 질의를 참조하여 생성할 SQL의 

수준을 Easy / Non-nested complex / Nested complex 로 

분류

- 분류 수준별 few-shot example을 활용하여 SQL 구문 생성

- Schema linking, SQL generation을 수행할 때 

입력의 형태를 다양화해서 투과한 multiple prompt 

결과를 활용

- 이를 통해 보다 일관적인 Schema linking, SQL query 

생성 결과를 얻고자 함



LinkAlign – Result
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• Main result: Schema linking performance

- 제안한 LinkAlign을 multi-database, single-database setting 모두에서 진행

- 제안한 LinkAlign은 baselines 대비 우수한 LA. recall, EM score를 보임

- 이는 LinkAlign이 실제 SQL 구문 생성에 필요한 DB에 대한 누락을 덜 하면서 (LA) 적절한 DB를 찾았을 경우 더 정확한 Schema linking을 수행하는 것을 의미 

(Recall, EM)



LinkAlign – Result
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• Main result: SQL query generation performance

- 제안한 LinkAlign의 schema linking 결과를 사용해서 DIN-SQL 방법론에 적용하여 SQL 구문 생성능력을 측정

- SPIDER 에서는 BASELINE 대비 SOTA 성능을 달성, BIRD 에서는 중간 정도의 성능 달성  



LinkAlign – Result
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• Ablation study: Validating Query rewriting & Response filtering strategy

- Retrieval 단계에서 Query Rewriting과 Schema linking 단계에서 Response filtering 

방법을 제거했을 때의 schema linking 성능 측정

- Query rewriting, Response filtering 제거할 때 모두 schema linking 성능이 하락함

- 또한 Response filtering을 제거했을 때 Query rewriting 대비 성능 하락이 두드러짐

- 이는 Step two의 실패가 정답 SQL 구문 생성을 위한 참조 DB 실패로 이어져서 성능 

하락이 두드러지는 것으로 추정

- 반대로 초기 관련 DB 집합을 구성하는 step one의 실패를 step two에서 방지해준다고도 

볼 수 있음
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SQL-R1
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- 기존의 Text2SQL 모델은 SFT 방식을 주로 활용하여 SQL 생성 

능력을 향상시키고자 함

- 그러나 SFT 방식으로 학습할 경우 특정 domain에 치중되거나 

complex question에 대응되는 complex query를 생성하기 

어려움

- 또한 SFT로 학습된 기존 모델은 단순 SQL query만 생성하므로 

SQL query문을 생성하기 까지의 추론 과정을 이해하기 어려움 

(Interpretability)

 ← 일반화 능력이 높으면서 추론의 과정을 설명할 수 있는 

Reasoning 기반 Text2SQL 모델 필요

→ 강화학습 (RL) 방식으로 학습된 Text2SQL 특화 모델 SQL-R1을 

제안



SQL-R1 – Method
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• Step 1: SFT (cold start) 

- 강화학습 기반의 Reasoning Text2SQL 모델 

학습을 할 때 어떤 Base 모델로 RL을 

시작할지에 관한 Cold-start 문제를 

확인하기 위한 실험을 진행

- 기본 Base 모델은 250만여 개의 합성 

데이터셋으로 구성된 SynSQL-2.5M을 

바탕으로 학습된 Qwen2.5-Coder 기반 

OmniSQL 모델을 사용

- Cold-start 문제를 검증하기 위한  추가 SFT 

데이터셋으로 SynSQL-2.5M 태깅된 4 개의 

난이도별 5만 건씩 샘플링한 SynSQL-

200K를 

SFT 학습 데이터셋을 구성

𝑣 = (𝑥, 𝑡, 𝑦∗)
Haoyang Li, Shang Wu, Xiaokang Zhang, Xinmei Huang, Jing Zhang, Fuxin Jiang, Shuai Wang, Tieying Zhang, Jianjun Chen, Rui Shi, Hong Chen, and Cuiping Li. 2025. OmniSQL: Synthesizing High-Quality Text-to-SQL Data at 

Scale. Proc. VLDB Endow. 18, 11 (July 2025), 4695–4709. https://doi.org/10.14778/3749646.3749723
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• Step 2: RL 

- 학습된 SFT 모델을 활용하여 Text2SQL에서 Reasoning을 강화하기 위한 강화학습을 수행

- SQL-R1 강화학습 알고리즘으로 GRPO를 사용, GRPO에서 Advantage를 계산하기 위한 verifiable reward 

function을 Text2SQL 상황에 맞게 4가지 Reward를 제안

- RL 학습 데이터셋은 SynSQL-2.5M에서 Complex에 해당하는 난이도 데이터를 5k개 sampling한 

SynSQL-Complex-5K 데이터를 학습 데이터로 사용

𝑣 = (𝑥, 𝑦∗)
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• Step 2: RL 

Format Reward

- 강화학습 과정에서 학습하는 모델의 생성물이 

Reasoning을 담은 부분은 <think>...</think> 안에 

담기고, 최종 SQL 구문 생성은 <answer> … 

</answer> 부분에 담기도록 Format Reward를 부여

- 생성된 SQL 구문의 경우 ```sql...``` 형식을 

준수해야함

- 생성된 SQL 구문이 실행 가능한 구문인지에 관한 

Reward

- 실행 불가능한 SQL 구문일 경우 다른 reward에서 

모두 penalty를 받도록 함

- 또한 생성된 SQL 구문의 실행시간이 너무 길 경우에 

한해서도 penalty를 받도록 함

Execution Reward
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• Step 2: RL 

- 생성한 SQL 구문이 정답 SQL 구문과 동일한  결과를 

반환할 경우, 즉 EX가 1일 경우에 높은 Reward를 

부여

- 다른 Reward대비 가장 scale이 크므로 저자들은 

모델이 정확한 SQL 구문을 생성하도록 Reward를 

설계 했다는 것을 알 수 있음

- 생성된 SQL 구문이 정답에 해당할 때 모델의 정답 

생성 과정을 최적화 하기 위하여 생성 길이 관점의 

reward를 부여

- 위 reward에서 이상적인 상황은 think length, 

answer length의 합이 MAX LENGTH와 비슷하면서 

answer length내에 SQL length 비율이 높은 경우가 

가장 높은 reward를 받을 수 있음

- 만약 thinking path가 너무 길어질 경우 penalty를 

부여

Result Reward Length Reward
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• Experimental dataset

Segment Size

Train 9,078

Validation 1,534

{'question_id': 0, 

'db_id': 'california_schools’, 

'question': 'What is the highest eligible free rate for K-12 students in 

the schools in Alameda County?’, 

'evidence': 'Eligible free rate for K-12 = `Free Meal Count (K-12)` / 

`Enrollment (K-12)`’, 

'SQL': "SELECT `Free Meal Count (K-12)` / `Enrollment (K-12)` FROM 

frpm WHERE `County Name` = 'Alameda' ORDER BY (CAST(`Free Meal 

Count (K-12)` AS REAL) / `Enrollment (K-12)`) DESC LIMIT 1", 

'difficulty': 'simple’}

Metadata

BIRD

Segment Size

Train 8,659

Validation 1,034

Spider
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• Metric

Execution Accuracy (EX)
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• Baselines

SQL-o1

- Text2SQL reasoning을 Monte Carlo Tree Search (Selection, Expansion, 

Simulation, Backpropagation) 방법을 통해 접근

- 모델을 SFT 방식으로 학습한 뒤 학습된 모델의 reasoning path 생성 과정에 

MCTS 개념을 구현한 reasoning 방법론 제안

Reasoning-SQL

- SQL-R1과 비슷하게 GRPO와 Text2SQL을 위한 Reward를 설계하여 RL로 학습된 

Reasoning-RL 제안

- Execution accuracy reward, LLM-as-a-judge reward, Syntax check reward, 

Schema linking reward, N-gram similarity reward, Format reward를 사용



SQL-R1 – Result
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• Main result

- 제안 SLQ-R1은 Baseline 대비 우수한 SQL 생성 능력을 보임

- 동일 Base Model, 동일 parameter를 쓰는 경우에 SQL-R1이 가장 우수한 성능을 달성

- GPT-4, Gemini 1.5-Pro와 같은 Proprietary model을 사용하는 방법론과 비교할 때도 

우수한 성능을 보이며 3B 모델의 경우 BIRD에서 comparable한 성능을 달성함



SQL-R1 – Result
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• Main result by complexity level

- Text2SQL 난이도에 따른 실험에서 SQL-R1은 Baselines 대비 모든 난이도에서 우수한 성능을 달성

- 특히 다른 Baselines 대비 난이도 상승에 따른 성능 감소폭이 적은 것을 볼 때 난이도 변화에도 robust한 성능을 보이는 것을 확인
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• Main result by cold start strategy

- Text2SQL task에서 RL 기반 reasoning model을 학습할 때 Base모델 선정 및 데이터셋 선정에 따른 SFT 모델이 RL 성능에 미치는 영향을 

알아보고자 

추가 분석을 실시

- 데이터셋의 양, 데이터셋의 구성 방식 등에 따른 최종 Reasoning 성능 변화 측정

- 분석 결과, 데이터셋의 양이 많을수록 Reasoning  성능이 높아졌으며, 이는 7B 모델을 SynSQL-200K 학습한 성능과 OminSQL-7B 모델의 성능 

비교결과를 통해 할 수 있음

- 한편, 데이터가 적은 상태에서 Thinking path가 추가된 Reasoning Instruction이 가미된 형태의 SFT는 성능 향상이 미미했음
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• Ablation study: Validating reward design

- Reward design에 관한 타당성 검증을 위해 Ablation Study를 진행

- 모든 Reward를 제거함에 따른 성능 저하가 나타나는 것으로 볼 때, 각 reward는 

SQL-R1의 reasoning 능력 향상에 기여를 하는 것을 알 수 있음

- 한편,  Execution Reward, Format Reward를 제거했을 때 성능 하락이 

두드러지는 것을 볼 때 SQL구문의 Syntax를 정확히 따르도록 학습을 유도하는 

방법이 실제 정확한 SQL 구문 생성에 유효함을 알 수 있음



Thank you
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