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Preventing Memory Contamination 
in Multi- Agent Systems

1204 정지민
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How Current Multi-Agent LLM Systems Work?
Preliminary

Shared State
(Memory, Context, Summary

WriterPlanner

Researcher Verifier

모든 에이전트가 하나의 shared state에 접근하기 때문에 단일 오류가 전체 그룹에 순식간에 
확장됨
Current Verification: 대부분 Output이 나온 후 마지막 단계에서 검증. 즉, state-level이 아니라 
post-hoc correction으로 동작함
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Why Multi-agent Hallucination is dangerous
Preliminary

Multi-agent hallucination은 Time-based propagation 문제이며, 단일 LLM보다 훨씬 치명적임
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The Shared-State Contamination Problem
Preliminary

Past State Reference(t-3, t-5)

Planning, Multi-hop QA, Negotiation 등에서 
에이전트는 과거의 State를 필연적으로 다시 
불러옴

이 과정에서 과거에 발생한 오류가 미래의 
추론을 contaminate 시킴
이때, LLM의 message passing이 안전해도, 
Shared State 자체가 오염되면 시스템 전체가 
붕괴됨

=> Hallucination Detection이 아니라, 오염 정보가 Memory에 들어오는 순간을 막아야 함
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Existing Verification is Mostly Post-hoc
Preliminary

기존의 Verification 기법들

- Self Reflection: LLM이 스스로 문제 감지

- Majority Voting: Ensemble로 오류 감소

- Verifier Agent: 특정 출력만 fact-checking

- Tool-assisted: Calculator, Web Search

- 이 기법들은 모두 output만 검증하기 때문에, 이미 메모리 깊숙이 퍼진 contamination은 되돌릴 
수 없음. 

-> Shared Memory Verification: Memory Write 감시, State-level Control, Prevention Approach
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ACL 2025 Findings
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LLM의 복잡한 추론 프롬프팅 발전
Introduction

- 복잡한 프롬프팅 기법은 고비용 계산 구조임

- 예를 들어 self-conistency는 문제 1개 해결에 40회 모델 호출 + 수천 토큰 필요

+ 문제 난이도와 상관없이 모든 입력에 동일한 고비용 절차 적용

높은 정확도 vs 계산 효율성의 trade-off

Chain-of-Thought Slow, deliberate 
thinking

=> 복잡한 추론 능력이 유의미하게 향상됨

- 실제 환경에서는 latency와 정확도가 모두 중요하기 때문에 필요한 경우에만 고비용을 쓰는 Adaptive-Prompting이 필수임
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Derailer-Rerailer
Introduction

- Derailer 메커니즘: 추론 불안정성을 탐지하는 효율적 방법을 제안하며, 복잡한 프롬프팅 기법을 필요한 경우에만 적용할 수 

있도록 함

- Rerailer 검증: 정확성과 효율성을 모두 유지하며 추론 안정성을 개선하는 새로운 prompting 전략을 개발함

- 실용적 인사이트: 다양한 LLM 프롬프팅 전략의 정확도-효율성 trade-off에 대한 광범위한 실험적 분석을 제공하며, 자원이 

제한된 환경에서의 LLM 활용을 위한 가이드라인을 제시함

Contribution

- 문제의 해결 가능성과 LLM 답변의 안정성 사이의 관계에서 영감을 받은 구조임

- Derailer: 여러 독립적 답변을 생성해 일관성을 점검함으로써, 개입이 필요한 문제를 효율적으로 식별함

- Rerailer: Derailer에서 불안정성이 검출된 경우에만, 고비용의 prompting 기법을 선택적으로 적용함
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System 2: Iterative Prompting
Multi-Pass & Refinement: 반복, 집계, 수정

High Cost, 복잡한 문제 필수

System 1: Immediate Prompting
Single Forward Pass: 한 번의 연속적인 흐름

Low Cost, 일상 작업 효율적

Emulating Human Cognitive Systems in Language Model Prompting
Motivations and Preliminary Findings

- Stable Success: 여러 번 샘플링해도 항상 정답이 나오는 경우

- Stable Failure: 어떤 방법을 써도 모델이 일관되게 실패

- Unstable Reasoning: 정답도 내고 오답도 내는 혼합 형태

언제 고비용의 프롬프팅을 사용해야 하는가?
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Derailer
Methodology

- Derailer의 목적은 일관되게 맞거나 일관되게 틀리는 stable reasoning의 사례를 식별, 제거하며, 고비용의 iterative

prompting이 거의 도움이 되지 않는 경우를 미리 걸러내는 것임

- Derailer는 가벼운 consistency check를 위해 n개의 샘플을 생성하여 답변이 안정적인지 평가함

- 안정적 추론은 사례가 충분히 많아야함

- 안정성 검사는 계산 효율적이여야함
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Rerailer Overview
Methodology

- Pairwise Comparison: 각 reasoning state의 품질을 평가할 때, 모델이 절대 점수를 매기도록 하는 방식이 아니라 독립적으로 

생성된 두 답변을 pairwise comparison 하도록 함.

- Dynamic Branching: 두 경로의 비교 결과가 우열이 명확할 때는 추가 탐색을 하지 않고, 동점일 때만 추가 branch를 탐색함
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Rerailer – Candidate Generation
Methodology – Framework and Implementation

- 각 reasoning 단계 i에서 모델은 adaptive sampling을 사용해 두 개의 후보 해를 생성함

Code Interpreter나 검색, 계산기 등 외부 도구를 활용하면 self-verification의 정확도가 향상됨

-> VerifiAgent는 LLM-as-a-Judge의 한 형태로, reasoning correctness에 특화된 도구 기반 검증을 수행함
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Rerailer – Pairwise Comparison
Methodology – Framework and Implementation

- 모델의 내재적 추론 능력을 활용해 두 후보 간의 의미적, 논리적 차이를 평가함

- 이때, bidirectional voting 방식을 통해, 후보 쌍을 두 번 비교함으로써 ordering bias를 줄임

- 이 과정에서 두 후보는 독립적으로 평가되며, 보다 견고한 비교 결과를 확인할 수 있음
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Rerailer – Adaptive Strategy Selection
Methodology – Framework and Implementation

- 모델의 pairwise comparison 결과에 따라 현재 단계의 확장 전략을 선택함

- 비교 결과가 명확하게 한 후보를 선호할 경우, 그 결과를 reasoning path에 추가하고 다음 단계로 진행함

- 동점인 경우 두 후보 모두를 다음 단계의 입력으로 사용하며, 알고리즘은 다시 Candidate Generation 단계로 돌아감
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Rerailer – Final Path Selection
Methodology – Framework and Implementation

- 반복적 reasoning 과정이 종료되면, 생성한 모든 경로에 대하여 점수를 계산함

- 이 중 가장 높은 점수를 가진 경로를 최종 reasoning chain으로 선택함

- 최종 답변은 이 경로의 마지막 단계에서 도출됨
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Baseline and Experimental Setup
Experiment

- Datasets

- BigBenchHard, MATH, StrategyQA 등에 포함된 27개 데이터 카테고리

- Baselines:

- Immediate Prompting: Least-to-Most, Chain-of-Thought 등 모두 단일 forward로 reasoning path를 생성하는 방식

- Iterative Prompting: Self-Consistency, Chain-of-Verification, Tree-of-Thought

- Metric

- Effectiveness: 각 추론 유형에서의 accuracy를 측정

- Efficiency: 입력, 출력 토큰 수의 총합을 측정

- AGKT(Accuracy Gain per K Token)

- Zero-shot baseline 대비 정확도 향상이 1,000 토큰당 얼마나 발생했는지
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Main Results
Experiment

- Derailer: 불필요한 반복 프롬프팅을 제거하여 계산 비용을 

크게 감소함

- Rerailer: 불안정한 reasoning에 대해 정교한 오류 보정을 

수행함

- 수학, 기호: 명확한 검증 절차와 단계별 점검이 성능 향상에 

도움함

- 상식: 중간 단계의 옳고 그름을 판별하기 위한 명확한 기준이 

부족함
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Sample Size – Derailer Analysis
Ablation Study and Analysis

- 소량의 샘플만으로도 안정적이고 신뢰할 수 있는 분류가 가능함
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Sample Size and Comparison Mechanism & Case Study
Ablation Study and Analysis
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Conclusion

- Derailer-Rerailer는 LLM의 추론 정확도와 계산 효율성 사이의 균형을 달성하기 위한 새로운 2단계 프레임워크로, selective

verification을 통해, 전수 탐색의 장점을 유지하면서도 계산 비용을 크게 절감할 수 있음을 입증함

- 계산량이 증가할수록 정확도도 일반적으로 향상되지만, 이러한 관계는 선형적이지 않으며, 충분한 자원을 투입하고도 

diminishing returns이 발생하는 경우가 많음을 시사함

- 초기 수준의 안정성 분석: 모델의 능력과 답변 일관성 간의 관계에 대한 분석은 아직 개념적 수준에 가까움

- 샘플링 파라미터 선택이 어려움: Derailer 단계에서 최적의 샘플 수를 결정하는 문제는 여전히 도전적이이며 empirical

tuning이 필요함

- 단일 모델 기반의 제한: 본 논문의 범위는 외부 도구나 외부 지식 없이, 단일 모델 내부의 reasoning 능력을 끌어내는 것에 

국한됨

Limitations
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EMNLP 2025 Findings
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Motivation
Introduction

- 최신 LLM들은 뛰어난 추론 능력을 보이지만 불완전하거나 잘못된 답변을 자주 생성함

- 기존 verification 방법들의 한계

- 특정 도메인 전용 (예: 수학, 코드)

- 모델마다 별도 훈련 필요 -> 비용 증가

- 다양한 reasoning task에서 범용적으로 사용하기 어려움

            : 일반적이고 효율적인 통합 검증 프레임워크인 VerifiAgent를 제안. 

- 기존 방식과 달리 meta-verification과 tool-based adaptive verification으로 구성된 two-layer 검증 메커니즘을 도입함

- 메타 검증 단계에서는 응답의 완전성과 논리적 일관성을 점검함

- Tool 기반 adaptive 단계에서는 수학적, 논리적, 상식적, 혹은 혹합 추론 등 다양한 문제를 해결하기 위해 python interpreter,

검색 엔진 등 필요한 외부 도구를 자동 선택함. 

Goal
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Motivation
Introduction

- 최신 LLM들은 뛰어난 추론 능력을 보이지만 불완전하거나 잘못된 답변을 자주 생성함

- 기존 verification 방법들의 한계

- 특정 도메인 전용 (예: 수학, 코드)

- 모델마다 별도 훈련 필요 -> 비용 증가

- 다양한 reasoning task에서 범용적으로 사용하기 어려움

            : 일반적이고 효율적인 통합 검증 프레임워크인 VerifiAgent를 제안. 

- 기존 방식과 달리 meta-verification과 tool-based adaptive verification으로 구성된 two-layer 검증 메커니즘을 도입함

- 메타 검증 층에서는 응답의 완전성과 논리적 일관성을 점검함

- 도구 기반 adaptive 층에서는 수학적, 논리적, 상식적, 혹은 혹합 추론 등 다양한 문제를 해결하기 위해 python interpreter,

검색 엔진 등 필요한 외부 도구를 자동 선택함. 

Goal

Two Key Empirical Findings

1. LLM reasoner는 Majority Vote, PRM (Prcess Reward Model)과 같은 inference scaling 기법을 통해 성능을 향상시킬 수 

있으나, VerifiAgent는 더 낮은 비용으로 더 높은 정확도를 달성함

2. VerifiAgent의 역량은 기반이 되는 backbone LLM의 성능이 향상될수록 함께 확장되며, Reasoner와 무관하게 일관된 

성능 향상을 보였음
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LLMs as Verifiers
Related Work

- LLM은 backward verification, mask checking 등을 통해 다른 LLM의 reasoning을 일반적으로 검증할 수 있음

- Chain-of-Verification처럼 해답을 단계로 분해하면 검증 일관성을 높일 수 있음

- Code Interpreter나 검색, 계산기 등 외부 도구를 활용하면 self-verification의 정확도가 향상됨

-> VerifiAgent는 LLM-as-a-Judge의 한 형태로, reasoning correctness에 특화된 도구 기반 검증을 수행함

- Test-Time Compute Scaling은 추론 단계에서 계산량을 늘려 정확도를 높이는 전략임

- 반복 샘플링은 coverage를 높이지만 불완전한 verifier는 성능 개선에 한계를 만듦

- Verifier 기반 전략은 base 모델의 출력 분포가 불확실할수록 더 안정적으로 성능이 스케일링됨

-> VerifiAgent는 학습 없이 frozen LLM으로 test-time scaling에 통합되어 정확도 향상에 기여함

Scaling Test-Time Compute
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Overview
VerifiAgent

- VerifiAgent는 frozen LLM에 외부 메커니즘을 결합해 다양한 추론 과제의 해결 과정이 올바른지 검증할 수 있도록 하는 plug-

and-play 방식의 검증 프레임워크임

- VerifiAgent는 layer-1: Meta Verification, layer-2: Tool-based Adaptive Verification으로 구성됨

- 하나의 solution은 이 두 layer를 순차적으로 거쳐 평가되며, 두 번째 단계의 검증은 meta 검증 단계에서 얻은 결과를 한번 더 

확인함으로써 전체 검증 정확도를 높임
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b.

MetaVerification
VerifiAgent

- Meta Verification의 목적은 solution의 두 가지 측면을 검증하는 것

- Completeness: 솔루션이 문제에서 요구하는 모든 요소를 빠짐없이 포함하며, 명확한 결론을 제공하는지를 의미함

- Consistency: 논리적 흐름이 점프, 누락, 모순 없이 자연스럽게 이어지는지를 의미함

- 초기 단계는 기본적인 품질 검증을 담당하며, 불완전하거나 모순된 솔루션이 다음 단계로 넘어가는 것을 방지함
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b.

Tool-based Adaptive Verification
VerifiAgent

- 메타 검증을 통과한 솔루션은 도구 기반 적응형 검증 단계로 넘어감

- VerifiAgent는 과제의 성격과 지시문에 따라 가장 적합한 도구를 동적으로 선택함

- 이 과정을 통해 VerifiAgent는 솔루션의 정확성을 확보할 뿐 아니라, 자연어 기반 추론 작업에서 투명하고 해석 가능한 검증 

과정을 제공함
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b.

Fine-grained Feedback
VerifiAgent

- 두 단계의 검증을 기반으로, VerifiAgent는 솔루션이 올바른지 여부를 나타내는 최종 평가 결과를 제공함(correct/incorrect)

- 이 검증 결과 외에도 VerifiAgent는 검증에 대한 confidence score로서 Vscore를 생성함

- 이러한 피드백은 솔루션을 수정, 개선하는 데 활용될 수 있으며, 추론 작업의 정확도를 향상하는 데 기여함
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b.

Baseline and Experimental Setup
Experiment

- Datasets

- 수학적 추론: GSM8K, MATH

- 논리적 추론: FOLIO, ProverQA

- Baselines: VerifiAgent와 유사하게 Training-free & generalized 접근법 

- Vanila Verifier: 구조화된 프롬프트만을 사용하여, 문제와 솔루션이 주어졌을 때 LLM에 이를 검증하도록 지시

- Deductive Verifier: LLM이 step-by-step reasoning으로 하위 추론으로 분해하여 논리적 구조를 세밀하게 점검

- Backward Verifier: 정답 후보를 문제에 덧붙인 뒤, 원래 조건은 masking하고, LLM에게 그 조건을 역으로 예측하도록 prompting

- 상식 추론: HotpotQA, StrategyQA

- 혼합 추론: ReWild

- Models

- Reasoner와 VerifiAgent 각각에 대해 다양한 backbone LLM 조합을 실험함

- Reasoner: GPT-4o, o3-mini, Llama-3.3-70B-Instruct-Turbo

- VerifiAgent: GPT-4o, o1-mini
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b.

Main Results
Experiment
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b.

Inference Scaling with VerifiAgent
Experiment

- Inference Scaling은 추론 단계에서 더 많은 계산 자원을 활용하여 추론 성능을 향상시키는 기법을 의미함.

- 구체적으로, 저자들은 먼저 LLM으로부터 하나의 출력을 샘플링하고, 만약 이 출력이 VerifiAgent의 검증을 통과하면 과정을 

종료함. 반대로 검증에 실패하면, 검증에 통과할 때까지 추가 샘플을 반복 생성하거나 최대 샘플 수에 도달할 때까지 샘플링을 

계속 함.



C
op

yr
ig

ht
 ©

 2
02

0 
N

at
ur

al
 L

an
gu

ag
e 

Pr
oc

es
si

ng
 &

 A
rt

ifi
ci

al
 In

te
lli

ge
nc

e 
La

b.

Inference Scaling with VerifiAgent
Experiment
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b.

Exploration on Feedback Utilization
Experiment

- Precaution-based: LLM이 이전 검증 시도에서 제공된 피드백을 활용하여 새로운 답안을 다시 생성하는 방식
- Post-editing-based: LLM이 이전에 작성한 잘못된 답안을 직접 수정하는 방식
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b.

Ablation Study

Meta Verification과 Tool verification이 서로 보완적인 기능을 하며, 각 요소가 VerifiAgent의 전체 성능을 높이는 데 
서로 다른 방식읕로 기여함
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b.

Conclusion

- VerifiAgent는 메타 검증 + 도구 기반 검증의 2단계 구조로, 수학, 논리, 상식, 하이브리드 추론 전반에서 기존 검증 방식보다 

더 높은 정확도를 달성함

- PRM 기반 Best-of-N 보다 훨씬 적은 샘플로 유사한 성능을 얻어 cost-efficient한 inference scaling을 가능하게 함

- LLM 실행 비용이 매우 크기 때문에, 다양한 모델을 광범위하게 평가하는 것이 어려움

- 현재 VerifiAgent가 지원하는 tool은 3가지로 제한되어 있음.

Limitations
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Problem

- Multi-agent Hallucination의 근본 원인을 부정확한  정보가 

Shared State에 저장(write)되는 순간 발생함

- 한 번 오염된 메모리는 다른 에이전트에 의해 기하급수적으로 

확산되며, post-hoc으로는 되돌릴 수 없음

Idea

- Preventive Verification: Shared State에 기록되기 전 Hallucination을 차단하는 새로운 아키텍처

- Key-Value 구조화: 모호성을 제거하고 충돌 감지

- Memory Auditor: 모든 기록 시도에 대한 실시간 감지

- Selective Sanitization: 고위험군만 선별하여 정밀 검증 
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b.

System Architecture

에이전트의 출력이 Shared State에 도달하기까지의 안전 검증 파이프라인

Auditor
ML classifier 기반 

위험 감지

KV Memory
저위험: 즉시 저장

Sanitizer
고위험: 정밀 검증

SVM, Attention, logit 값 변화 등을 
기반으로 한 가벼운 Classifier 

구조화된 데이터를 이용해 충돌을 즉시 감지, 
여러 모델 간의 해석 차이를 줄임

검증 통과

Planner
에러 로그와 함께 
Hallucination을 

알림

Re-planning 또는
이전 step으로 회귀



C
op

yr
ig

ht
 ©

 2
02

0 
N

at
ur

al
 L

an
gu

ag
e 

Pr
oc

es
si

ng
 &

 A
rt

ifi
ci

al
 In

te
lli

ge
nc

e 
La

b.

Contribution

- Output-level correction이 아닌 state-level correction으로 오염된 정보가 메모리에 저장되는 순간부터 차단함

- Cross-agent contamination 문제를 직접 다뤄 단일 agent 연구에서는 존재하지 않는 multi-agent의 shared state 기반 오류 

전파 문제를 처음으로 해결함

- 고위험 도메인 적용 가능

- 어느 task에 가장 적합할지? Multi-document QA, Fact-checking, 일반 reasoning QA, 멀티턴 협상

고민
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