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Background

1. Alignment Tax

Pre-trained | 6. () 0
Instruction
Tuning RLHF

| Helpful + 56%
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{ Comprehension -15%

Figure 1: Ilustration of RLHF procedure and the alignment tax.

- Training language models to follow instructions with human feedback (NIPS 2022, InstructGPT)
= RLHF K| 2t alignment tax & 2|

- Mitigating the Alignment Tax of RLHF (arXiv 2024)
= RLHFOJ| A| Z A St= Alignment Tax 2t2F A1

KOREA

UNIVERSITY




O™l v B & sh&= 26l super human feedbackO| 2 2

> e 2 U2 F= Q78| M3 & (human preference data) 2 B RS St
- ool ds &0 os H=0| & = U=

- Ot nEE B RE2 UM EH SO VWM E = BlS

- Human Preference DataE & #5ot= 22 O < H| %

e A0 =
22H Z0| x| EA4= M S517| fI6 LLM-as-a-Judge TSRS Soff 0 2
XM & AlE )= 'self-Rewarding Language Models'S &+t
= LLM alignment S0j| X| Mo 2 HH|O|EE|=

AN 2 RE S ohgots U A et

"= KOREA

UNIVERSITY




Method

Self-Rewarding Language Models

Self-Instruction creation

Generated Seed model Generate
new prompts (for 7=1) responses
1
P> v,
M, :
Yi

Instruction following training

Generate
rewards

Preference
pairs

DPO
training M
A+

{x1, 92, y!}

1) Self-Instruction creation

Generated new prompts— DBEH MM ZE S
Ol AHE &,
O| = LLM-as-a-Judge ZEZEE S5 AtA| reward 0| =

Clo
H =

0=

got=

Next iteration model

2) Instruction following training

Preference pairs= Generated responsesOf| A{ MEIZ| 1
DPO S50 AFEE[O 2 & Mt+10] E

"= KOREA

UNIVERSITY



Method
Self-Rewarding Language Models

1) Initialization
- A& G|O|& =H]
- Instruction Fined-tuning (Instruction Fine-Tuning, IFT) G| O] E
- LLM-as-a-Judge Instruction Following Cl|O|E{ (Evaluation Fine-Tuning, EFT)
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Method

1) Initialization

1-1) Seed instruction following data (IFT | O] E])
AEetEE LLIME

sh&sh7| I8l Q1ZHo] 2B 28t Instruction Following A= Al Instruction Fine-Tuning (IFT) A

HIO|E{ = (instruction prompt, response) pairs® T4 (OpenAssistant/oasst1 C|O|E{ A0 A| 3,200702] & CHst EH Ot MEZISI ALE)

1-2) Seed LLM-as-a-Judge instruction following data (EFT G| O] E{)
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Review the user’s question and the corresponding response using the additive 5-point
scoring system described below. Points are accumulated based on the satisfaction of each
criterion:

- Add 1 point if the response is relevant and provides some information related to
the user’s inquiry, even if it is incomplete or contains some irrelevant content.

- Add another point if the response addresses a substantial portion of the user’s question,
but does not completely resolve the query or provide a direct answer.

- Award a third point if the response answers the basic elements of the user’s question in a
useful way, regardless of whether it seems to have been written by an Al Assistant or if it
has elements typically found in blogs or search results.

- Grant a fourth point if the response is clearly written from an Al Assistant’s perspective,
addressing the user’s question directly and comprehensively, and is well-organized and
helpful, even if there is slight room for improvement in clarity, conciseness or focus.

- Bestow a fifth point for a response that is impeccably tailored to the user’s question
by an Al Assistant, without extraneous information, reflecting expert knowledge, and
demonstrating a high-quality, engaging, and insightful answer.

User: <INSTRUCTION_HERE>
<response><RESPONSE_HERE> </response>

After examining the user’s instruction and the response:

- Briefly justify your total score, up to 100 words.
- Conclude with the score using the format: “Score: <total points>"

Remember to assess from the AI Assistant perspective, utilizing web search knowledge as
necessary. To evaluate the response in alignment with this additive scoring model, we’ll
systematically attribute points based on the outlined criteria.
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Method

2) Self-Instruction creation
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Method

3) Instruction Following Training
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Method

4) Overall Self-Alignment Algorithm
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ExXperiments

Model & Seed Data

Model
- Pretrained Llama 2 70B

Seed Data
IFT data

- (instruction prompt, response) pairsZ T
- OpenAssistant/oasst1 H|O|E{ A0 A 3,200712| % CHz} &2t ME Y50 AL

EFT data
- Open Assistant 5| O| E{ & LLM-as-a-Judge H|O| H £ 4
- 1,6307H train / 5317} eval set2 2 T4
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ExXperiments

r=id R

- Instruction Following Ability
- GPT-42 AlE & Alpacabval 7 ZEZE
- Winrate AFE
- MT-Bench (=8}, 2 d, 20|, & & &)

- NLP Benchmark
- ARC-Easy, ARC-Challenge, Hellaswag, SIQA, PIQA, GSM8K, MMLU, OBQA, NQ

- Winrate AFE
- MT-Bench (=&, 2 Y, EE2{0], & &)

Training Details

- SFT
- global batch = 16, drop out = 0.1
- Ir=5.5e-6~1.1e-6

- Self-instruction Creation
- ME2 ZEZE 44 > Llama 2-chat 70BE 8-shot Z&Z X E I Self-Instruct P4 2 2 4
IFT GO Ol M 671 AHE & HEE ZEZEO|AM 270 AHE
Temperature = 0.6, top-p =0.9
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Results

Instruction Following Ability

Self-Rewarding Wins Tie SFT Baseline Wins

Self-Rewarding My
VS. 62.5 27.7 9.8

SFT Baseline

Self-Rewarding M,
Vs, 49.2 36.3 14.5

SFT Baseline

Self-Rewarding M;
VS, 30.5 38.7 30.9

SFT Baseline

Left Wins (in Left vs. Right) Tie Right Wins

Self-Rewarding M3
VS, 47.7 39.8 12.5

M,

Self-Rewarding M,
Vs, 55.5 32.8 11.7

My

Self-Rewarding M3
Vs, 68.8 22.7 8.6

My

Figure 3: Instruction following ability improves with Self-Training: We evaluate our
models using head-to-head win rates on diverse prompts using GPT-4. The SFT Baseline is
on par with Self-Rewarding Iteration 1 (M;). However, Iteration 2 (Msz) outperforms both
Tteration 1 (M;) and the SFT Baseline. Iteration 3 (M3) gives further gains over Iteration 2
(M), outperforming M;, M> and the SFT Baseline by a large margin.
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Results

Instruction Following Ability
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Figure 3: Instruction following ability improves with Self-Training: We evaluate our
models using head-to-head win rates on diverse prompts using GPT-4. The SFT Baseline is

lteration 3 (M_3)2 Iteration 2 (M_2)2F2| 7L M 47.7% 22|, M2= 12.5% 22| 2 71X 0
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on par with Self-Rewarding Iteration 1 (M;). However, Iteration 2 (Msz) outperforms both
Iteration 1 (M) and the SFT Baseline. Iteration 3 (M3) gives further gains over Iteration 2
(M), outperforming M;, M> and the SFT Baseline by a large margin.
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Results

Instruction Following Ability

AlpacaEval 2.00{| M £ 5 Skab b=

Table 1: AlpacaEval 2.0 results (win rate over GPT-4 Turbo evaluated by GPT-4).
Self-Rewarding iterations yield improving win rates. Iteration 3 (Mj3) outperforms many
existing models that use proprietary training data or targets distilled from stronger models.

Zol= / 2Xot= 7HH e

35 1 +o— w1,
304 ™ Alignment Targets
= s Model Win Rate Distilled Proprietary
= Self-Rewarding 70B
ey Tteration 1 (My) 9.94%
= Iteration 2 (Mz) 15.38%
: Iteration 3 (M;) 20.44%
= Selected models from the leaderboard
GPT-4 0314 22.07% v
Mistral Medium 21.86% v
Claude 2 17.19% v
T T T T T T T T T T T T T T T T T GEIIliIl‘i‘ P‘[O 16'85% /
£33 8885 g y=zg7 e plelsey GPT-4 0613 15.76% v
ERERE EEEEES AR 2% GPT 3.5 Turbo 0613 14.13% v
mEST S 3 CICICR: Aslz €S LLaMA?2 Chat 70B 13.87% v
-E 5 55 E 2 Z|E = Vicuna 33B v1.3 12.71% v
= e =]z A Humpback LLaMa2 70B 10.12%
2 Guanaco 65B 6.86%
Davinei001 2.76% v
Alpaca 7B 2.59% v

k>
ks

2> MathO| M= M , Reasoning®{| A= O} 2F7H9o| 7| M
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Results

Instruction Following Ability

NLP Benchmarks

Table 3: NLP Benchmarks. Self-Rewarding models mostly tend to maintain performance
compared to the Llama 2 70B base model and the SFT Baseline, despite being fine-tuned on

very different instruction-following prompts.

ARC (1) HellaSwag GSMSK MMLU NQ

challenge (1) ) MW
Llama 2 57.40 85.30 56.80 68.90 25.30
SFT Baseline 20.97 85.17 20.72 69.76 34.35
M, 57.51 84.99 60.27 69.34 35.48
Ma 54.51 84.27 59.29 69.31  33.07
My 53.13 83.29 a7.70 69.37 31.86

= Open Assistant ZTEZEE

benchmark ‘30| & 0{ X OF S} X| 2t
(RLHF OI—.—01I NLP benchamrk ‘3 H ot ElCt= O™ A+

C1-8, alignment tax)

IH*OE ot A0, NLP

, I 2 7X| e

MT-Bench (9 Tasks)

Table 2: MT-Bench Results (on a scale of 10). Self-Rewarding iterations yield improving
scores across various categories. Math, code & reasoning performance and iteration gains
are smaller than for other categories, likely due to the makeup of the Open Assistant seed
data we use.

Overall Math, Code Humanities, Extraction,
Score & Reasoning STEM, Roleplay & Writing

SFT Baseline 6.85 3.93 8.60
M, 6.78 3.83 8.55
M 7.01 4.05 8.79
M; 7.25 4.17 9.10

=> Math & Reasoning0l|A{ = O} 2F7Ho| 7| M
& H=H Ho|HE Exi=0|, HE|H|AME 7]/

Human Evaluation

Self-Rewarding Wins Tie SFT Baseline Wins
Self-Rewarding M3
VS, T 66.0 16.0 18.0
SFT Baseline

Self-Rewarding M;
Vs, 56.0 24.0 20.0
SFT Baseline

Self-Rewarding M,
Vs, 28.0 26.0 46.0

SFT Baseline

Figure 5: Human evaluation results. Iterations of Self-Rewarding (M,, Ms and
MS3) provide progressively better head-to-head win rates compared to the SFT baseline, in
agreement with the automatic evaluation results.
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