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Overview

Solar-Open-100B(Upstage) - GLM복제 이슈

• Layernorm 간의 cosine similarity가 매우 높음

• 라이선스 및 기타 코드에 GLM의 흔적이 남아있음



Overview

Solar는 From scratch가 맞습니다

• Layernorm간의 코사인 유사도는 모델 복제의 근거가 될 수 없음

• Solar Phi, Phi  GLM, Solar GLM 모두 높은 코사인 유사도 



Overview

Layernorm은 가진 정보량이 적다

• Attention,  MLP에 비해 매우 적은 가중치만을 지니

고 있음

Layernorm의 weight은 1.0으로 초기화된다

• Xavier, He 등의 초기화 대신 1.0으로 초기화하여 상

대적으로 이미 방향성이 정해진 상태에서 학습됨

▪ Xavier, He: 이전 층의 노드 개수 n을 표준편차에 반영

하여 정규분포로 초기화하는 방법

의혹 제기 실험의 논리적 결함

• 0번째 레이어 vs 타 레이어의 layernorm간의 비교만 

수행

▪ 주장: 같은 모델의 레이어간 layernorm의 코사인 유사

도는 낮게 측정되는데, 다른 모델의 layernorm의 코사

인 유사도가 높다면 복제된 모델이다



생각해봅시다

모델의 복제 여부를 파악할 수 있는 다른 합리적인 방법은 없을까?





Preliminaries

Black-Box Identification

• 모델 가중치 사용 X, API-only 모델에 적합

• Behavioral Fingerprinting

▪ 모델의 생성문에서 통계적 패턴을 분석하거나 스타일을 분석

▪ Decoding randomness에 취약함

• Watermarking

▪ 학습 또는 토큰 단위 perturbation을 통해 모델이 detectable한 signal을 삽입하도록 함

▪ Output editing으로 인해 무효화 가능



Preliminaries

White-Box Identification

• Weight, activation 등 모델의 내부 수치를 활용

• Representation-based Fingerprinting

▪ Hidden representation을 분석 (Gradient statistics)

▪ 데이터 의존적이며, 훈련 데이터와의 potential correlation 존재 가능

• Weight-based Fingerprinting

▪ 모델 weights에 대한 data-free analysis



Intrinsic Fingerprint of LLMs: Continue Training is NOT All You Need to Steal A Model

Methodology

1. 모델의 모든 attention matrix에 대해 각각의 표준 편차를 구함

2. 이를 attention matrix의구성요소에 따라 분류하여 sequence를 만듦

3.  각 sequence를 정규화한 sequence S를 구함

4. 모델 간의 유사성은 각 sequence 간의 상관 계수를 계산하여 평가

▪ Pearson 상관계수를 사용

• Layer 개수가 다르다면?

▪ 선형 보간 사용 



Intrinsic Fingerprint of LLMs: Continue Training is NOT All You Need to Steal A Model

Experiments

• Model

▪ Qwen 계열 모델

▪ Llama 계열 모델

▪ Moe 모델 (OLMoE-7BA1B, Qwen1.5-MoE-A2.7B, Pangu Pro MoE)

• 분석 종류

▪ Cross-Family Model

▪ Quantitative Correlation

▪ Validation Through Known Model Lineages

▪ Feed-Forward Network Analysis



Cross-Family Model Analysis

• Model Family 중 대표 모델간의 비교

• 각각의 모델은 고유한 패턴이 존재함

• Pangu와 Qwen2.5-14B는 네 가지 attention matrix 유형에서 모두 거의 동일한 패턴을 보이고 있음 

Intrinsic Fingerprint of LLMs: Continue Training is NOT All You Need to Steal A Model



Quantitative Correlation Analysis

• Pangu와 Qwen2.5-14B

• Q: 0.867

• K: 0.928

• V: 0.939

• O: 0.973

• 이 정도의 수치는 같은 Family 계열 모델에서

도 찾아보기 힘든 수치

Intrinsic Fingerprint of LLMs: Continue Training is NOT All You Need to Steal A Model



Validation Through Known Model Lineages

• 방법론이 유효한가에 대해 model derivation 관계가 공식화된 모델 간의 비교를 진행

• Llama-3.1-70B vs. Llama-3.1-Nemotron-70B-Instruct

• Instruction tuning 및 safety alignment를 거치더라도, attention parameter의 distribution은거의 동일하게 유지

Intrinsic Fingerprint of LLMs: Continue Training is NOT All You Need to Steal A Model



Validation Through Known Model Lineages

• Qwen2.5-7B vs. OpenR1-Qwen-7B vs. OpenThinker3-7B

• Instruction-tuning의 목표가 다르더라도 상당한 일관성을 보임

Intrinsic Fingerprint of LLMs: Continue Training is NOT All You Need to Steal A Model



Validation Through Known Model Lineages

• Qwen-1.8B vs Qwen1.5-MoE-A2.7B

• Qwen1.5-MoE-A2.7B는 Qwen-1.8를 upcycle해서 만들었는데, 상당한 아키텍처 수정에도 불구하고 기존 모델과 

매우 유사한 흐름을 보임

• Pangu(MoE)가 Qwen2.5-14B(Dense)를 upcycle해서 만들었다는 주장을 뒷받침

Intrinsic Fingerprint of LLMs: Continue Training is NOT All You Need to Steal A Model



Feed-Forward Network Analysis

• Qwen2.5-14B vs Qwen2-57B-A14B

• MoE 모델과 Dense 모델은 Feed-forward 층에서 그 

아키텍처가 상이하기 때문에 동일한 패턴을 지니

기가 힘듦

• 그러나 Pangu와 Qwen2.5-14B는 아키텍처의 차이

에도 불구하고 강한 유사성을 띰

• Pangu(MoE)가 Qwen2.5-14B(Dense)를 upcycle해서 

만들었다는 주장을 뒷받침

Intrinsic Fingerprint of LLMs: Continue Training is NOT All You Need to Steal A Model



Intrinsic Fingerprint of LLMs: Continue Training is NOT All You Need to Steal A Model

모델 A Initial Point

모델 A

대규모 CPT & Instruction tuning

모델 A’





Ghost in the Transformer: Detecting Model Reuse with Invariant Spectral Signatures

Preliminaries

• Random Matrix Theory

▪ 원소가 확률적으로 분표하는 행렬의 성질을 이해하는 연구

▪ Marchenko–Pastur 법칙: bulk(Marchenko–Pastur에 해당하는 연속분포)와 그 바깥의 spikes로 구분 가능

▪ Spikes는 보통 모델이 학습한 유의미한 방향을 나타냄. 이를 제거하면 perplexity가 상당히 증가함

▪ SVD에서 상위 특이값이 spike로 간주됨

▪ PT 시에 큰 특이값은 안정적으로 유지, 모델의 전반적인 동작을 고정

▪ 사후 학습 시 큰 특이값보다는 작은 특이값과 관련된 방향에 영향을 미침

→사후 학습을 해도 original 모델과 상위 특이값이 크게 변하지 않는다!



Ghost in the Transformer: Detecting Model Reuse with Invariant Spectral Signatures

Experiments Setup

• Fine-tuned Variants

▪ Llama-2-7b & variants

▪ Llama-2-7b & 관련 없는 모델 (Mistral-7B-v0.1, Internlm2-base-7b ..)

• Quantifying Spectral Similarity

▪ 비교대상 모델 A, B의 각 레이어의 유형별 attention matrix에 대해서 특이값 벡터를 추출함

▪ 얻어진 벡터쌍을 각 쌍의 최소 유효랭크만큼의 길이로 통일해서 자르고, 정규화

▪ 유효랭크 = exp(-∑(행렬 각 원소의 값 * log (행렬 각 원소의 값)))

▪ 최종 벡터쌍의 MSE를 둘 간의 스펙트럼 거리로 정의



Ghost in the Transformer: Detecting Model Reuse with Invariant Spectral Signatures

Experiments Setup

• 비교군

▪ Fine-Tuning

▪ Model Pruning

▪ Model Merging

▪ Model Upcycling: Dense LLM을 MoE로 변환하는 경우를 포함

▪ Permutation and Scaling Transformations

▪ Unrelated Models

• Baselines

▪ QueRE: 특정 query에 대한 응답 패턴을 통해 모델 특성을 식별

▪ Logits: 모델의 출력 분포를 통해 모델 특성을 식별

▪ REEF: activation / embedding간의 유사도를 비교

▪ PCS: weight의 통계적 특성을 분석해 모델의 유사성을 식별



Ghost in the Transformer: Detecting Model Reuse with Invariant Spectral Signatures

Methodology

• 개별 attention matrix의 특이값을 직접 비교하는 것은 여러 기

법에 의해 무의미해질 수 있음

▪ 변환 공격에 비교적 robust하게 동작하는 matrix product에서 파

생된 스펙트럼을 분석

• Similarity Metrics

• GhostSpec-mse: 레이어별 비교 (1.0에 가까울수록 유사)

▪ 구성 요소별 특이값 벡터 간의 스펙트럼 거리의 MSE 평균

▪ POSA 알고리즘을 통해 레이어 개수가 다른 비교군에서도 

방법론 적용 가능

• GhostSpec-corr: 전반적인 추세를 비교

▪ 각 레이어별 matrix product (q,k), (v,o)의 특이값 평균을 측

정하여 sequence 구성 후 이 sequence간의 거리를 비교

▪ 마찬가지로 레이어 수가 달라 sequence의 길이가 다를 경

우 POSA 알고리즘과 유사하게 정렬

Avg MSE



Ghost in the Transformer: Detecting Model Reuse with Invariant Spectral Signatures

Results

• Data-aware, Data-free 방법론을 막론하고 모든 케이스에 대해서 정확하게 모델 복제 여부를 파악해냄

• 기존 방법론들이 판단에 어려움을 겪었던 Structured Pruning, Merging&Expansion, False Positive에서도 강건한 

성능을 보임 



Ghost in the Transformer: Detecting Model Reuse with Invariant Spectral Signatures

Results

• Fine-tuning, Adversarial transform(성능을 유지하며 내부 가중치 분포를 바꿈), Unstructured pruning(개별 weight

을 0으로 만듦)을 통한 변형의 경우, 모든 baselines가 쉽게 이를 구분할 수 있음



Ghost in the Transformer: Detecting Model Reuse with Invariant Spectral Signatures

Results

• PCS의 경우 Structured Pruning(블록 단위로 Pruning), Merging 과 같은 기법을 적용했을 때 이를 구분하지 못하는 

모습을 보임

• QueRE(응답 분석)의 경우 Unrelated Model를 구분하지 못하고 유사도를 높게 부여함



Ghost in the Transformer: Detecting Model Reuse with Invariant Spectral Signatures

Case Study

• Pangu-pro-moe vs. 다른 모델

▪ OpenMath-Nemotron14B (Qwen2.5-14B fine-tuning), Qwen2.5-14B와 

가장 높은 유사성을 보임

▪ Yi-1.5-9B, Llama-2-13b-hf와는 유사성을 보이지 않음

Analysis of MLP Module Spectra

• Llama-2-7b-hf 기준으로 MLP 레이어에 대해 GhostSpec-mse를 통

한 분석을 진행

▪ 파생된 모델과 그렇지 않은 모델 간의 유의미한 유사도 차이가 나

타남

• 그러나 Dense-to-MoE 확장에는 MLP 레이어를 보는 것이 robust

하지 않을 수 있음

• 따라서 attention-based fingerprints가 더 효율적이고 안정적임



Thank you

Q&A
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