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1. INTRODUCTION

5.
(o

Distribution Sharpen

“RL post-training S0l LIEILI= SEIS2 HI0IA D2 EXH6HX] SAUE SE2HOE MES2 BSAIN?”

* RL post-trained distributionOl HIOIA &0 H&5H)| &= ME2 =2 Z=E QHE0IL = 2101 OtLIZL,
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1. INTRODUCTION

Distribution Sharpening

“RL post-training S0l LIEHLI= 52152 HIOIA S0l EMSHX AL
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«  HIOIA 22 RL post-trained 29| pass@k B4 Hiw! 21k k gt £ 3R

RL post-trained D22 &4 CH2F& 0l X6k
-~ RL FE0IM LIEHLH= S22 HIOIA 20 o101 EXHet
- RL2 pass@k 4s8 B N 459F MEHHsi= Ao ZE 2
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1. INTRODUCTION

Sampling Algorithm

“HI0lA REOIM =T MESsl= 2AUOEE RLE HE REN [ISS &

Power Distribution
:RL CHA&! HIOIA 2E! distribution2

=1,

harpenstl| ¢l

*  Markov Chain Monte Carlo= & Sampling Algorithm
of S8 YAIE XHEGH0

: power distribution= 2 Alst &4
HIOIA 22! likelihoodOll 2t subsequenceE EHE610{ resamplest

* Al 270 [[I=H H:”Ql/\ EE"Q” H RIA AHEEI-‘-th D-||:||-O§E QREQQt EHE-C',-|- ::|-|I t% %% _JI\_ %!%
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2. MCMC SAMPLING FOR POWER DISTRIBUTIONS

Reasoning with Power Distribution

RLOI REo| EXE U= of= 2 0|21H, 2 =22 DEO| =8 X E = Jojeie= |l S2¢t 21E L
X g
- p" (o= 4.0}
: 2l X pll aZ HENMESoHA K| 2tE 29| RS W=ESHH Bt= BX
: AIEAQ| #THA likelihoodE &2 A2 O =H, E2
: 2 MHel et =&l XI~E HEGH0]

Ol2Hol ZIHE! £ U= BE HBE2E 114610 8l E2Q| JISXKIE 2Fe
(Zoy e s Xy )
(

XOyennsTyeney L)

D, P
Ppow (Tt|To ... Tt-1) = 5 = )
T>t
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2. MCMC SAMPLING FOR POWER DISTRIBUTIONS

Reasoning with Power Distribution

RLOI 229 EX = HIIEA ol= AT 0I2IE, E =E2 D20 A= EXE I JoJsico=N Saist 281= !
Xt &t
*  Power Distribution ?
- p” (o =4.0)
(2l 22 plll oE HENISHM DKl 22 20| DS WESHH HE EX
P NBEAQ| #IHA likelihoodE &2 H2 O =, K2

=28 el 2 =E0l XIe~E HESH

O2HHI ZIHE! 4 U= BE HZ2E 114610 S E20| JI=XIE Z&e
(] ) Zw>tp(x0,...,xt,...,xgv)°‘
w(Ztlzo ... xe—1) = .
Ppo t|L0o t—1 sztP(IOa-'ﬂxt"":xT)a

- Power distribution2 2= Jtsst A2IAN CHOH HIAtsh= 2101 2Jts&
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2. MCMC SAMPLING FOR POWER DISTRIBUTIONS

Metropolis-Hasﬁngs Algorithm
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2. MCMC SAMPLING FOR POWER DISTRIBUTIONS

Power Sampling with Autoregressive MCMC

MCMC 211215 9] B 21 A2t XA 2HIE clZol)] 2loll == B MXH M4 A= Mot
H

= [ I
- EBEZS o

-
Ot Ek XAzl EHUHIM HEES £36H| HE0, 2= SE0IM AEE 212601 SIS0 X HHiEH ZE
BILXl sampling = resampling Nt

2BIHAl sampling = resampling Nt

«  3BJHKI sampling » resampling NH
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3. EXPERIMENTS

Main Resultls

Power SamplingS ZE8t 0|2 222 RLE HE 2E HHO| IS6HHHL 21X SIkol= 4SS BE0S

In-domain: MATH5008| &2 power sampling2 GRPOZ st5st REIO| ds0l =28t

Of

Qut-of-domain: power sampling0l GRPO RRELC Lk H L8t 452 HY. Ol= Z=2=501 EFE CIOIE AN AHE

FEl 2~ A= HHH, power sampling2 HIOIA 2EIO| REX Q1 X| 4]

I
1

MATH500 HumanEval GPQA  AlpacaEval2.0

Qwen2.5-Math-7B

Base 0.496 0.329 0.278 1.61
Low-temperature 0.690 0.512 0.353 2.09
Power Sampling (ours) 0.748 0.573 0.389 2.88
GRPO (MATH) 0.785 0.537 0.399 2.38
Qwen2.5-7B
Base 0.498 0.329 0.278 7.05
Low-temperature 0.628 0.524 0.303 5.29
Power Sampling (ours) 0.706 0.622 0.318 8.59
GRPO (MATH) 0.740 0.561 0.354 7.62
Phi-3.5-mini-instruct
Base 0.400 0.213 0.273 14.82
Low-temperature 0.478 0.585 0.293 18.15
Power Sampling (ours) 0.508 0.732 0.364 17.65
GRPO (MATH) 0.406 0.134 0.359 16.74
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3. EXPERIMENTS

Reasoning Trace Likelihoods and Confidences

4SS =01= Y EH9| L1240l Z4L6l= Mode Collapse &€&

rir
o

RLe| 11E=Q1 E Ml = GlLt
Power samplingOl HIOIA 2EIECH =2 likelihood sequenceE samplingdtEiA, SAI0I diversityES Xl

=13
=

(=13
=

GRPO:= HIOIA 2E! distribution= Z6HH sharpenstH Al diversity= 3|

B Ours

Base

B GRPO
14 4

Density

~(L8 0.6 N4 0.2
Average Log-Likelihood
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3. EXPERIMENTS

RLC E [I=E E32 2l Y29 F=EORE, 4SS0l L] 2 SES H0l= 30l A= A
*  MATH500 GCIOIEAIHIM Qwen2.5-Ma
GRPO = Efff 21017t Z01E: 671 E2

Power sampling2 SAIECE [H 2l 8= RTotAl (US0E =610 672 EZ0I2h= RAISH B2 20|12 E48¢
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3. EXPERIMENTS

Diversity and Pass@k Performance
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4. CONCLUSION

Conclusion
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1. INTRODUCTION

Chain-of-Thought
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« KGN EZ2 HIAEQ| RELS RAIGHI 2o £ =20= J10{otXl &= =2t
o

Standard Prompting
Model Input
Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?
A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

Model Output
A: The answer is 27. x

%7 Natural Language Processing
& Artificial Intelligence

Chain-of-Thought Prompting
Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

Model Output

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 =9. The
answer is 9. «
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1. INTRODUCTION

Chain of Continuous Thought

LLME 2E F==ES H|

%7 Natural Language Processing
& Artificial Intelligence

=S HIAES] 6HX 2211, BE LHE 9] Latent SpacelllAl S1E5X 01 WEH AEHE F=2ES WS £ AU
=
- JIEY CoTIt Hidden State » Token - Embedding - Next Hidden Statell &S HRLCHH,
Coconut2 SZt EE2 dd NIES 42l Last Hidden StateE 2& [ EHAHIC| 213 JIHIZ O = ALEE!
- OIE Soll ZE2 2A0i2k= S0l 201K 210 HA=SF01 HIE SZHHA =ES 0|0
- HIAE J[H CoT= StLtel ZZ2Et 2 s ZE0l AXIEE, latent spacelllMel FE2 0i2] JIsEE SA0 23S =~ AN
BFS1t RAISH 215 22
- FEMEUHAN M8z E2 LE 2JINOE S0|HAME, HHEZI0| 2R SETH =2l 2XI0IM CoTELI 228t s

Chain-of-Thought (CoT) Chain of Thought (CoconuT)

output token
(sampling)
last hidden state

X; Xip1 Xipn Xitj [Answer] [Answer]

input embedding

input token [Question] X i+j [Question] <bot> <eot>
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2. COCONUT

Implicit CoT

stSS ¢t reasoning 12 LHXHEE J1E
* Reasoning HHAEES #&o6HX| &1, EVHEOZE answerE & HH0I=E st
1. Question/Reasoning/AnswerZ &= OIOIEHM O Z sts
2. €& epochlilt reasoningll 7| ki EZ2S d=kotd st EI
3. ZIE &t& Al reasoning2 M6t A E answerE MY E otS
Input CoT Output
Explicit CoT Stage0: 2 1 x 4 3 = 8 4 + 0 6 3 = 8 0 4
Stage1: 2 1 x 4 3 = E 4 + 0 6 3 E = 8 0 4
Stage2: 2 1 X 4 3 = . + 0 6 3 . = 8§ 0 4
Stage® 2 1 x 4 3 = | 063 i =280 4
Stage4: 2 1 x 4 3 = i 6 3 i = 8 0 4
Staged: 2 1 x 4 3 = 5 3 E = 8 0 4
Implic‘itCoT Stage6: 2 1 x 4 3 = 5 E = 8 0 4

18 /26



%7 Natural Language Processing
& Artificial Intelligence

2. COCONUT

Chain of Continuous Thought

St E3 44 N1ZE d=folal, 29| last hidden stateE & LIE SHC 2= 2HISCE A2
« Stage 0 (Standard CoT): LHEQI HIAE J|HI CoT=E ZERIE a5
- Stage 1(Intfroduction of Latent Thought): &2 0tA0| A Bl AEIEt [atent vectorZ WIS, LHHXI =E2 00l

HAES g

- Stage k (Increasing Latent Steps)
: SHE0| ZIE [M2t ARS SHL FMIHSHD, coT "

(Supervised
A Xt2IE continuous vectorE AL L2

fine-tuning)

° FInGI STGge COCONUT [Question] <bot> <eot> [Step 1] [Step 2] [Step N] [Answer]

. — o (Stage 0)

: B E FE 82 latent space LK,
[Question] <bot> <eot> [Step 2] [Step N] Answer]

DE2 X5 EEDIS HAES =3t (Stage 1)
[Question] <bot> <eot> [Answer discrete token

(Stage N) calculating loss
N X
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2. COCONUT

—

Chain of Continuous Though

r

S22 E3 44 M3 S ¢=iotal, 29| last hidden state= A& LIS B2l 2= 2HIES = AHE

= —
 Inference: Z20| £LIM HIZ <bot> E2E &12!610] & BEE - AR H= 2H0I1J1? (Keot> Z2AH)
o BIH A:| atent vectorE E11 HZE=X| Z2E6t= 018 EE)| stS
o B B:2ta TTAEE 20|02 & AIDE 49 (AElIME SHed2 QloH 0] 2 ALR)

CoT Question]

(Supervised
fine-tuning)

CoCONuUT

[Question] <bot><eot> [Step 1] [Step 2] [Step N] [Answer]

(Stage 0)
[Question] <bot> <eot> [Step 2] [Step N

(Stage 1)

[Question] <bot> <eot> [Answer discrete token

(Stage N) calculating loss
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3. EXPERIMENTS

Empirical Results with Coconut

Main Result

- GSM8K: ZSstul £F0| 22| FE

*  ProntoQA: JeHE 20| X4 MHE &8¢t =2 FE
* ProsQA: S&Et X4 O J|B =2] &2 - &2 Al planning & Z branch 8 It 23

P
*  Pause Token: reasoning [H&! “pause>” token2 &

GSM8k ProntoQA ProsQA

Method
Acc. (%) #f Tokens Acc. (%) +# Tokens Acc. (%) # Tokens

CoT 42.9 +0.2 25.0 98.8 +0.8 92.5 77.5 1.9 49.4

No-CoT  16.5 +0.5 2.2 93.8 +o.7 3.0 76.7 £1.0 8.2

iCoT 30.0* 2.2 99.8 +0.3 3.0 98.2 +0.3 8.2

Pause Token 16.4 +1.8 2.2 T7.7 +21.0 3.0 75.9 0.7 8.2
CoconNuT (Ours) 34.1 +1.5 8.2 99.8 +0.2 9.0 97.0 +0.3 14.2
- w/o curriculum  14.4 +o8 8.2 52.4 +0.4 9.0 76.1 +0.2 14.2
- w/o thought 21.6 +0.5 2.3 99.9 +0a1 3.0 95.5 +1.1 8.2

- pause as thought 24.1 +o.7 2.2 100.0 +0.1 3.0 96.6 +0.8 8.2
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Empirical Results with Coconut

Main Result

. pt o

rlo
A
rH

0

S0l =251 20X X2

A 418t

t, Coconut2 &

=41t

=i A0l =2 H0iE

O

ds ol=tE S06HH

- =&¢e Planning0l 2 [, implicit reasoning2 L =20l &
- HHLO| CHAIE JIOIE Q10| ZE1 EELOIOE FH =ES A St B, =2 1HE0| 8l= LH REHC LIS A0l 2iUS
GSM8k ProntoQA ProsQA
Method
cc. (%) # Tokens Acc. (%) # Tokens Acc. (%) +# Tokens
CoT 429 +o0.2 25.0 98.8 +0.8 92.5 77.5 £1.9 49.4
No-CoT  16.5 +0.5 2.2 93.8 +0.7 3.0 76.7 £1.0 8.2
iCoT 30.0* 2.2 99.8 +0.3 3.0 98.2 +0.3 8.2
Pause Token 16.4 +1.8 2.2 T7.7 £21.0 3.0 75.9 0.7 8.2
CoconNuT (Ours) 34.1 +1.5 8.2 99.8 +0.2 9.0 97.0 +0.3 14.2
- w/o curriculum  14.4 +o8 8.2 52.4 +0.4 9.0 76.1 +0.2 14.2
- w/o thought 21.6 +0.5 2.3 99.9 +0a1 3.0 95.5 +1.1 8.2
- pause as thought 24.1 +o.7 2.2 100.0 +0.1 3.0 96.6 +0.8 8.2
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3. EXPERIMENTS

Empirical Results with Coconut

Main Result

- E2 &2 ProntoQAL2l ProsQAMIM Coconut2 JIE CoTHLI &2 £9| EE= 2

oo

- T HIH 2 SELE REO| d5 &0 &Y
(1) Reasoning Efficiency on GSM8k
x5

+ LHE SEh 3 EHIH ETH HES sHAISHE zo I\ —
HA T Rst Z2H HASO| EEHE|0f Y= gt Continuous
3
Z2It BIUS. 01 20 WEDH F20 TRst  Fo \
HMEHE S 28X OF otEstn Y2 oln| B —

20 10
Generated Tokens

(1) Coconut on GSM8k
35

30

Accuracy (%)

25
0 1 2
# Thoughts per step (c)
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HAMBIHIME [ 52 DTS Sast
180 0.22
“180" 0.20

‘9" 0.13

James decides to run 3 sprints 3 times a week. He
runs 60 meters each sprint. How many total meters
does he run a week?
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Continuous Space Enables Latent Tree Search

FE9 A2zl (Probing)

S ALD EHINIM ZRIZE BIAES Hd6HH 6101, 2201 S AEHN OE MEHXISE 1
“Alex’2h= =EUHIM AIE

CoT (Greedy): A EHHINIM JHE 2t=0] =2 “lempus” (0.33)E S Al AMEHGHT 1

“zhorpus’, “grimpus”} &

Z2=0t &

ot0f CH2 EtAHI2! {flempus”, “sterpus’,

Coconut (BFS): H HAHWAE= “lempus’It %S0T =611,
ol JHE =2 =H21(0.87)2 2 &
Latent space2 0id1 =& S AIGI 1124GICHI,

20| M2t = AE HAZEE &= tree search s282 H0iES

Question:

. Root node
. Target node

Distractive node
O Child of the
root node
Grandchild of
the root node

-9

Ground Truth Solution

Alex is a grimpus.

Every grimpus is a rorpus.
Every rorpus is a bompus.
### Alex is a bompus

Coconut (k=1)

O <bot> @ <eot>
O Every lempus is a scrompus

Every scrompus is a brimpus.

### Alex is a brimpus x

(Wrong Target)

{6t Y==K =E E2E =40l

I AFIE HKIMH “grimpus”™@| A& L=E921 “rorpus”

Every grimpus is a yimpus. Every worpus is a jelpus. Every zhorpus
is a sterpus. Alex is a grimpus -
Question: Is Alex a gorpus or bompus?

Every lumps is a yumpus.

CoT

Alex is a lempus.

Every lempus is a scrompus.
Every scrompus is a yumpus.
Every yumpus is a rempus
Every rempus is a gorpus.
### Alex is a gorpus x
(Hallucination)

Coconut (k=2)

<bot> <eot>
Every rorpus is a bompus.
### Alex is a bompus ¢
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4. CONCLUSION

Conclusion

Continuous latent spacelllACl =22 2let ME2 HH2ICIAS HAIGH0 == SEIS SHAIE
- Coconut2 latent space LHHIMCl ASKH QI AMMO ZEE ZEISH =2| Tt Jisets S
* Latent spaceliiM =E2 HIAE 840l E= HES S0IHAL, EL| B 22 XA AIIE JHS6HH 610 8s &
- 2olz= BHE HiR= 21 d26l=s EE HHRs HE E2lE £+ U= JIsE8E HMAl

OtAIZ2 & AHE JI2XID] 2IoH EIAE CoT LIOIE I JI0IE F&= olil0F &

o =

GSM8k 21, F=tst £X| QAHIM =2l ENMIEIS Ol X0l 85 SFa2 LIELEK] &5
(=)

|

NEHO| At EHHIEIE n+1HH9| =XIE QI forward passE £86H0f 610 &t& & F=E HIE 4R
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