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• Multi-turn LLM agents를 위해서 GRPO나 PPO같은 RL algorithms이 적용되고 있음

• 하지만 보통 마지막 결과(정답 맞았는지) 같은 outcome-only 보상만 주는 경우가 많음

 → 보상이 sparse해서 어느 턴의 행동이 성공/실패에 기여했는지를 가르치는 credit assignment가 잘 안 됨

• 멀티턴 에이전트 RL에서 성능이 제한되는 이유는 결국 턴 단위 촘촘한 reward를 주지 않기 때문에

➔ 멀티턴에서 turn-level reward를 설계해 중간중간 피드백을 주면, RL이 어떤 단계가 기여했나를 더 잘 알 수 있다!

➔ GRPO와 PPO를 멀티턴 버전으로 확장하고, 턴 단위 보상을 통합하는 방식을 제안함 

Motivation
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• 기존의 multi-turn agentic LLM의 수식을 보면

1. single turn problem으로 formulate하는 경우

 → multi-turn(검색→추론→검색→답)이어도, 이 식에서는 그 과정을 쪼개지 않고 “한 번의 선택”처럼 취급함

2. 턴별로 쪼개서 formulate하는 경우

 → 만약 turn별 중간 reward가 0이고 γ 가 1이면 결국 이것도 단일턴과 다를게 없다.

그렇다고 GRPO 수식을 그대로 적용하면?

trajectory는 “질문 x 하나에 대해, 모델이 끝까지 만든 전체 응답 y” → 멀티턴이면 전체 history

하지만, trajectory-level reward니까 전체 history y에 대해서 주는 reward는 1개 → 어떤 턴이 문제였는지 구분X

➔그니까 “turn-level reward 설계 + 멀티턴용 GRPO”가 필요하다!

Method
1. GRPO WITH TURN-LEVEL REWARDS FOR MULTI-TURN AGENTIC TASKS
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• MT-GRPO

simple two-turn agent setting (K = 2), 첫번째 turn reward                 , 두번째 turn reward

turn-level advantages

[Case Study for MT-GRPO on a Two-Turn Agentic Task]

(1턴) reasoning + search tool 호출 → 검색 결과 반환

(2턴) retrieved result 기반 reasoning → final answer 출력

GRPO-OR: outcome reward만 사용

GRPO-MR: intermediate + outcome을 합쳐서(merged) trajectory-level 보상 1개로 만듦

MT-GRPO(제안하는): intermediate/outcome을 턴 단위 advantage로 분리해서 credit assignment를 더 세밀하게

→MT-GRPO가 툴을 더 안정적으로, 꾸준히 제대로 호출

→MT-GRPO가 exact match가 더 높게

 

Method
2. MT-GPRO: TURN-LEVEL CREDIT ASSIGNMENT FOR GRPO
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• MT-GRPO

하지만 MT-GRPO는 한계가 존재함

1. 턴이 증가할수록 롤 아웃수가 폭증함

 각 턴별로 G개의 롤아웃 * 그거에따라 달라지는 다음 턴 상태에 맞게 또 G번

 ⇒ horizon이 긴 멀티턴 작업에는 계산적으로 너무 비싸다

2. 그룹 안의 모든 rollout이 같은 턴 수를 갖도록 강제해야 함

 같은 턴 k에서 나온 intermediate reward들끼리 비교해서 평균보다 낮고 높음을 해야하는데

 G번 안에서 어떤 답변을 생성하는냐에 따라서 어떤 샘플은 1턴만에 끝나고, 어떤 샘플은 3턴 → 비교에 공정X

 ⇒ 같은 턴 수를 강제하면 유연성이 떨어짐

→ 지수적 롤아웃 비용 + fixed-turn 제약 때문에 일반 에이전트에 쓰기 어렵다

 

Method
2. MT-GPRO: TURN-LEVEL CREDIT ASSIGNMENT FOR GRPO
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• MT-PPO

 그럼 좀 더 현실적으로 쓸 수 있는 방법은?→ PPO

PPO objective (clipped surrogate)

• 차이: reward 설계

Turn-level rewards: 중간 턴 𝑅𝐼, 최종 결과 𝑅𝑂

reward은 턴 경계에만 주지만, GAE(Generalized Advantage Estimation)가 그 신호를 앞 토큰들로 분배

이를 시간방향으로 누적해서 𝐴𝑡

Method
3. PPO WITH TURN-LEVEL REWARDS FOR MULTI-TURN AGENTIC TASKS
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• 매 iteration에서

 1) reasoning으로 현재 컨텍스트에서 부족한 정보를 판단

 2) 검색 쿼리 생성

 3) 외부 DB(Wikipedia search)에서 결과를 받아 컨텍스트에

→ 충분하다고 판단되면 마지막에 최종 답변 생성

• TURN-LEVEL VERIFIABLE REWARD DESIGN

기존 연구들처럼 final-answer correctness만 보지 않겠다. 중간 reward도 고려하겠다

Outcome Verifiable Rewards

 : Outcome Exact Match Reward, Outcome Format Reward

Intermediate Verifiable Rewards

 : Intermediate Retrieval Existence Reward (검색 결과에 정답 문자열이 포함되었는지)

 : Intermediate Format Reward (중간 턴 출력이 포맷에 맞고, 규칙대로 썼는지)

 : Intermediate Search Count Reward (검색을 너무 많이 하지 않게 누적 검색 횟수에 비례해 깎는 항)

Case Study
MULTI-TURN REASONING-AUGMENTED SEARCH AGENT
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• Training Details

 Base model: Qwen2.5-7B

 Retrieval: E5

 Corpus: 2018 Wikipedia dump

 

Datasets: NQ, HotpotQA

Metric: (1) answer correctness (EM) reward

(2) format correctness reward

(3) retrieval correctness reward

• Training Dynamics

- MT-PPO가 초반 수렴이 더 빠름

- Step이 지나면 PPO에서 분산이 더 커지고 성능 저하, 하지만 MT-PPO는 일관되게 성능을 유지함

- 특히 format reward에서 차이가 큼

 

Experiments
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• Benchmark Performance

- 정답률 향상

- + format 을 맞추지 못해서 평가/학습이 깨지는 문제를 거의 제거해서

학습의 안정성과 실전 출력 품질이 같이 좋아졌음을 강조함

 

Experiments
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• Ablation Study

- (1) reward design, (2) max turn

1) Reward Design

Search count reward가 없을 때 성능 변화

 → 패널티를 주지 않으면 과도한 검색/불안정으로 이해 성능이 특정 step 이후로 크게 하락함

2) max turn

턴을 늘려도 PPO의 성능 상승 트렌드의 유사함 -> 더 긴 multi-turn에서도 MT-PPO는 안정적으로 적용가능

 

Experiments
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• Multi-turn agentic 작업에서는 turn-level reward가 핵심임

• 이를 위해서 intermediate reward를 설계하고 GRPO/PPO를 multi-turn 으로 확장

 → 각 턴에서 더 세밀한 피드백을 받게

• reasoning-augmented search agent 실험에서, turn-level reward를 넣으면 여러 RL 알고리즘에서 학습 안정성과 정확도가 크게

개선

 

Conclusion
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• LLM의 Multi-turn instruction following capability은 real-world application에서 core competency

• 하지만 기존 benchmark들은 주로

 - 형식/키워드/스타일과 같은 fine-grained constraint satisfaction

 - domain-specific capability 

→ Turn들간의 structural dependency를 제대로 평가하지 못함

• 이러한 structural dependency는 user intent를 반영하고 있음

• 그러니까 if 평가는 constraint 만족만이 아니라 구조를 유지하는 능력도 고려해야한다!

• 그럼 구조를 평가하기 위해 구조를 정의하고 이를 기반으로 benchmark 

• 기존 LLM들 분석 – fail case

 

Motivation
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• 왜 structure가 중요한가

 기존 multi-turn 평가는 대화를 “single-turn들의 단순 연결”로 취급함

 → Failure to model complex scenarios

 → Methodological bias - inter-turn structural constraints을 놓치고, intra-turn constraints만 과대평가

 → Analytical deficiency

  

➔ 그래서 이 논문에서는 StructFlowBench 제안

 - structural flow modeling을 통해 turn 간 관계를 모델링

 - 여섯 가지 Structural Flow Taxonomy 정의

 

Motivation
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• Structural Flow란

 각 user turn(또는 turn 쌍)을 “이 turn이 이전 어떤 turn과 어떤 방식으로 연결되는가”

 → 모델이 단순히 각 turn의 지시사항을 따르는지(intra-turn) 뿐 아니라, 이전 대화 맥락을 어떤 구조로 이어가며 유지/변형하는지도 고려하겠다

  

• Taxonomy

  

StructFlowBench
1. Structural Flow Taxonomy

- Follow-up
 : 바로 직전 turn을 자연스럽게 이어 묻는 형태.
 : 직전 답변의 특정 부분을 더 자세히, 더 깊게 파고드는 추가 질문/추가 요구에 해당
- Refinement
 : 직전 user instruction을 수정해서 다시 요구하는 형태
 : 기존 요구를 더 잘 만족시키도록 constraints를 업데이트하는 것
- Recall
 : 2 turn 이상의 이전 정보를 다시 참조하는 형태
- Expansion
 : 하나의 주제에 대해서 말하다가 여러 subtopic으로 fan-out되는 형태
- Summary
 : 여러 이전 turn에서 나온 내용을 fan-in으로 합쳐서 요약/정리하는 형태
- Unrelatedness
 : 이전 맥락과 주제가 끊기고 갑자기 새 토픽으로 전환되는
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• Structural Flow란

 각 user turn(또는 turn 쌍)을 “이 turn이 이전 어떤 turn과 어떤 방식으로 연결되는가”

 → 모델이 단순히 각 turn의 지시사항을 따르는지(intra-turn) 뿐 아니라, 이전 대화 맥락을 어떤 구조로 이어가며 유지/변형하는지도 고려하겠다

  

• Taxonomy

  

StructFlowBench
1. Structural Flow Taxonomy

- Follow-up
 : 바로 직전 turn을 자연스럽게 이어 묻는 형태.
 : 직전 답변의 특정 부분을 더 자세히, 더 깊게 파고드는 추가 질문/추가 요구에 해당
- Refinement
 : 직전 user instruction을 수정해서 다시 요구하는 형태
 : 기존 요구를 더 잘 만족시키도록 constraints를 업데이트하는 것
- Recall
 : 2 turn 이상의 이전 정보를 다시 참조하는 형태
- Expansion
 : 하나의 주제에 대해서 말하다가 여러 subtopic으로 fan-out되는 형태
- Summary
 : 여러 이전 turn에서 나온 내용을 fan-in으로 합쳐서 요약/정리하는 형태
- Unrelatedness
 : 이전 맥락과 주제가 끊기고 갑자기 새 토픽으로 전환되는

→ 기존 맥락을 그대로 두고 더 묻는 느낌

→ 기존 요청을 고쳐서 다시 요구하는
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• 정의된 관계들은 평가를 위한 새로운 structural constraints가 됨

• StructFlowBench의 평가 기준을 두 종류의 constraints로

(1) intra-turn constraints

- Content Constraint: 답변이 지정된 content scope에만 집중하고 topic에서 벗어나지 않아야 함

- Keyword/Element Constraint: 답변에 “Artificial Intelligence”를 포함하라

- Style Constraint: 특정 writing style을 따라야 함

- Basic Format Constraint: 기본 출력 format을 지켜야 함

- Quantity Format Constraint: 정량적 길이 제약을 맞춰야 함

- Template Format Constraint: 정해진 template 구조를 따라야 함

- Situation Constraint: 특정 identity/role/context 같은 scenario/perspective에 맞춰 답해야 함

- Inverse Constraint: 의도적으로 포함하지 말아야 하는(avoid) 제약

(2) multi-turn structural constraints

- Follow-up Constraint, Refinement Constraint, Expansion Constraint, Summary Constraint, Recall Constraint

StructFlowBench
2. Constraint Categories
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StructFlowBench
3. Data Construction Pipeline



/3320

StructFlowBench
4. Evaluation

• LLM을 어떻게 평가했는지

• Evaluation Criteria

 - Golden Context

  : 데이터셋의 gold dialog history를 context로 줌

 - Constraint decomposition + binary questions

  : multi-turn user instruction을 여러 개의 독립적인 constraints로 쪼갠 뒤, 각 constraint에 대해 만족 여부를

  묻는 binary question형태로 checklist

  → checklist 결과를 모아서 최종 점수

 - LLM-as-a-judge 

  : GPT-4o에게 golden context + test model response + constraint checklist + prompt template를 넣어서 평가
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StructFlowBench
4. Evaluation

• Evaluation Metrics

 - CSR (Constraint Satisfaction Rate)

  : 전체 instruction에 대해, 각 instruction이 가진 constraints 중 몇 %를 만족했는지의 평균

 - ISR (Instruction Satisfaction Rate)

  : instruction 단위로 “그 instruction의 모든 constraints를 전부 만족했는가”

 - DRFR (Decomposed Requirements Following Ratio)

  : instruction을 더 세분화한 scoring questions 기반으로, 전체 요구사항 만족도를 요약하는 지표

 - WCSR (Weighted Constraint Satisfaction Rate)

  : 기존 CSR/ISR의 한계를 보완하려고 weight를 반영한 지표

  : constraint마다 weight를 주고 만족 여부를 합산하는

  intra-turn constraints weight = 1

  structural constraints weight = 2
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• 총 13개 LLM을 평가함

 Closed-source (3): GPT-4o, Claude-3.5-Sonnet, Gemini-1.5-Pro

 Open-source (10): Llama-3.1-Instruct-8B, Mistral-7B-Instruct-v0.3, Qwen2.5-7B/14B-Instruct, Yi-6B-Chat, Phi-3.5-

mini-instruct, GLM-4-9B-Chat, DeepSeek-R1-Distill-Llama-8B, DeepSeek-R1-Distill-Qwen-7B, DeepSeek-v3

Experiments
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• Overall Results

Experiments

• DeepSeek-v3가 모든 지표에서 1등 → fine-grained constraint + multi-turn structure 이해도 모두 강함

• Gemini-1.5-Pro, GPT-4o 그 다음으로 잘함→ intra-turn은 비슷해도 structural constraints에서 조금 약한 경향

• DeepSeek-R1-Distill-Qwen-7B와 Mistral-7B-Instruct-v0.3 → 제일 못함



/3324

• Overall Results

Experiments

• DeepSeek-R1-Distill-Llama-8B가 Llama-3.1-8B-Instruct보다 모든 지표에서 나음→ distillation 효과

• 반대로 DeepSeek-R1-Distill-Qwen-7B는 기반이 Qwen2.5-Math-7B라서 multi-turn instruction following에 약해진 것

• open-source인 DeepSeek-v3가 closed-source를 앞선 것 자체가 의미 있는 결과다
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• Structural-Constraint-Categorized Performance

Experiments

• follow-up이 거의 다 잘한다 → 문맥 이어가기 강함

• recall도 전반적으로 잘함→ 이전 turn 참조 능력 양호

• summary / expansion은 모델 간 편차가 큼 → 상위 모델이 유리

• refinement가 가장 어려움
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• Intra-Turn-Constraint-Categorized Performance

Experiments

• DeepSeek-v3 / Gemini-1.5-Pro / GPT-4o → 대부분 제약에서 거의 다 잘함

• 다른 모델들도 rule-based constraints에서는 거의 잘함

• format-related constraints(Basic Format / Template Format / Quantity Format)에서 성능이 크게 떨어짐
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• Complex Scenario Suitability Study

이 논문에서 구축한 multi-turn dialogue dataset이 real world use case와 얼마나 근접한지 검증

StructFlowBench, MT-Bench-101, Multi-IF, MT-Eval, WILDCHAT 에서 랜덤하게 데이터 샘플링

GPT-4o가 아래 3가지를 1~5점으로 채점:

 Logical Coherence

 Goal Clarity

 Transition Naturalness

추가로 Confusion Factor (CF) - “평균 점수 ≥ 4”인 dialogue 비율 (사람이 봤을 때 real-world처럼 착각할 정도의 비율)

Further Analysis

• StructFlowBench가 세 항목 전반에서 가장 높음
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• Fail Case Analysis of Refinement

왜 refinement에서 무너지는지

- 모델이 Refinement vs Follow-up를 잘 구분 못함

- refinement는 “일부 constraints만 업데이트”되어야 하고, 이전 turn에서 주어진 다른 constraints는 유지되어야 하는데, 모델이 이전 constraints를

forgetting해서 누락/위반하는 일이 잦다

Further Analysis
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• Human Verification

LLM-as-a-judge로 했으니까 그게 얼마나 믿을만한지

- Qwen2.5-7B-Instruct 출력에서 30 dialogues

- domain experts 2명이 constraint 준수를 binary로 평가

- GPT-4o 평가와 사람 평가의 Kappa coefficient ≈ 0.75

Further Analysis
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• 기존 multi-turn instruction-following 평가는 intra-turn constraints 중심이라, turn 간 structural intricacies / inter-turn 

dependency를 충분히 평가하지 못함

• 그래서 StructFlowBench 제안

 dual-constraint evaluation system = intra-turn constraints + inter-turn structural constraints

 six-category Structural Flow Taxonomy로 multi-turn 흐름을 구조적으로 모델링/평가

• 13개 representative LLM 평가에서 모델 간 structural processing capabilities 격차를 증명하며, multi-turn에서 구조를

유지/처리하는 능력이 아직 불완전함을 보여줌

Conclusion
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• 우리가 real world에서 llm을 사용할때 보통 한 턴에 모든 instruction을 주는게 아니라 여러 턴에 걸쳐서 대화를 하면서 점차 구체화됨

• → 실제 사람과의 multi-turn conversation 는 실질적인 LLM 응용에서 매우 중요함.

하지만 현재 LLM은 멀티턴에서 성능의 한계를 보이고 있음

• 멀티턴에서 LLM의 성능 하락의 핵심 원인을 “조기 확답(early commitment) + 업데이트 실패 + 상위지시 유지 실패”로 분해하고, 이를

턴별 credit으로 학습시키는 RL 프레임워크를 제안

- 기존의 멀티턴 성능 떨어지는 원인 증명 및 정의

- 지수 롤아웃 없이 turn-level credit을 주는 Masked Turn-Relative GRPO 제안



Thank you
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