1 Introduction

Our QA system consists of two different components. One is for the factoid and list questions, and the other is for the other questions. The components are processed individually, and each result is combined into our submitted run.

For the factoid questions, we have tried to find answers by proximity-based named entity search. Given a question, fine-grained named entities for candidate answers are selected, and all the extracted passages containing the named entities and question keywords are scored by a proximity-based measure. List questions are processed in a similar way to the factoid questions, but we empirically give a threshold value to obtain only top \(n \) candidate answers.

For other questions, relevant phrases consisting of noun phrases and verb phrases are extracted using a dependency relationship to the question target from the initially retrieved sentences. After redundant phrases are eliminated from the answer candidates, final answers are selected using several selection criteria including the term statistics from an encyclopedia.

Section 2 summarizes our system for factoid and list questions, and Section 3 for other questions. In Section 4, the TREC evaluation results are analyzed, and Section 5 concludes our work.

2 Factoid and List Questions

To put it briefly, our system extracts answer candidates from AQUAINT documents according to the expected answer types of a question, and uses a confidence score to rank the answer candidates. The highest ranked answer candidate is selected as an answer for the factoid question, while answer candidates with a higher score than a
certain pre-defined threshold value are chosen for list questions. As shown in Figure 1, there are following three steps in answering factoid and list questions: a question analysis step, a passage retrieval step, and an answer extraction step.

2.1 Question Analysis

For the first step, we have performed named entity tagging to each question with BBN IdentiFinder[1]. Since BBN IdentiFinder attaches only coarse-grained classes to named entities, we have further subcategorized the BBN IdentiFinder classes into finer-grained ones. The fine-grained named entity tagging was done with a named entity dictionary. The dictionary entries were automatically extracted from AQUAINT corpus by using simple patterns, and then some entries were added manually.

To cover some questions for the names of artworks such as books and movies, we have developed a title named entity tagger and tagged the title of artworks. The detail of this tagger is described in [2]. The part of the named entity tag set we used is shown in Table 1.

The Conexor FDG parser[3] has been used to analyze the dependency structure of a named entity tagged question. The expected answer types of the question are analyzed with a set of hand-made patterns and mapped to certain named entity tags or WordNet classes. Query words for document retrieval are also extracted in this phase by removing stopwords from the question.
<table>
<thead>
<tr>
<th>Category</th>
<th>Sub-category</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Country</td>
<td>Korea, Italy, Mauritius, Mexico, ...</td>
</tr>
<tr>
<td></td>
<td>Continent</td>
<td>Africa, Asia, ...</td>
</tr>
<tr>
<td></td>
<td>City</td>
<td>San Francisco, Jakarta, ...</td>
</tr>
<tr>
<td></td>
<td>Planet</td>
<td>Earth, Jupiter, ...</td>
</tr>
<tr>
<td></td>
<td>Mountain</td>
<td>Pikes Peak, Mt. Everest, ...</td>
</tr>
<tr>
<td></td>
<td>Sea</td>
<td>Red Sea, Pacific, ...</td>
</tr>
<tr>
<td>Person</td>
<td></td>
<td>Louis Armstrong, George Bush, ...</td>
</tr>
<tr>
<td>Organization</td>
<td>Event</td>
<td>Vietnam war, World War I, ...</td>
</tr>
<tr>
<td></td>
<td>Games</td>
<td>Super Bowl, U.S. Open, World Cup, ...</td>
</tr>
<tr>
<td></td>
<td>Univ.</td>
<td>University of Mississippi, ...</td>
</tr>
<tr>
<td></td>
<td>Company</td>
<td>Coca-Cola Co., Dell, ...</td>
</tr>
<tr>
<td></td>
<td>Sports Team</td>
<td>Baltimore Orioles, Seattle Mariners, ...</td>
</tr>
<tr>
<td>Date</td>
<td></td>
<td>July 14, ...</td>
</tr>
<tr>
<td>Month</td>
<td></td>
<td>April, June, ...</td>
</tr>
<tr>
<td>Day</td>
<td></td>
<td>Thursday, Wednesday, ...</td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td>1:05 p.m., 7 p.m., ...</td>
</tr>
<tr>
<td>Money</td>
<td></td>
<td>$35, $5.4 billion, ...</td>
</tr>
<tr>
<td>Percent</td>
<td></td>
<td>10 percent, 16.5%</td>
</tr>
<tr>
<td>Artworks</td>
<td></td>
<td>City of Angels, Notes of a Native Son, ...</td>
</tr>
<tr>
<td>Number</td>
<td></td>
<td>one, two, 323, 32.35, ...</td>
</tr>
<tr>
<td></td>
<td>Length</td>
<td>1,893 yards, 382 kilometers, ...</td>
</tr>
<tr>
<td></td>
<td>Height</td>
<td>37-foot-high</td>
</tr>
<tr>
<td></td>
<td>Weight</td>
<td>1 ton, 52kg, 0.5 gram, ...</td>
</tr>
<tr>
<td></td>
<td>Count</td>
<td>3 times, 7times, ...</td>
</tr>
<tr>
<td></td>
<td>Speed</td>
<td>17kph, 100Kmh, ...</td>
</tr>
<tr>
<td></td>
<td>Temperature</td>
<td>24 degree, 53f</td>
</tr>
<tr>
<td></td>
<td>Volume</td>
<td>500cc, 1.5-liter</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td>Pentium III Xeon, PC, ...</td>
</tr>
</tbody>
</table>

Table 1: Part of the named entity tag set used in our system

2.2 Passage Retrieval

The relevant passages for a given question are retrieved by a document retrieval system and passage selection rules. The document retrieval system which uses Okapi ranking function retrieves AQUAINT documents relevant to the given question. Among the retrieved documents, one or two sentences that contain

- the expected answer type of the given question, or
- at least one word from question keywords, or
- every proper noun in the given question

are selected as a passage.
2.3 Answer Extraction

Every named entity which matches to the expected answer type is selected as an answer candidate among the retrieved passages, which is NE tagged and dependency-parsed. Also every noun in the passages is considered as an answer candidate if the noun is a hyponym of the expected answer type in Wordnet.

Based on the observation that some types of questions which contain only the question focus and target words \(^1\) can be easily answered only with the co-occurrence frequency between an answer candidate and named entities in the question, we ranked answer candidates for this type of question according to their frequencies in the retrieved passages.

Otherwise, we use a confidence score for answer candidates to rank them. The confidence score is a measure of similarity between the given question and a passage considering

- surface distance between the answer candidate and question words or their morphological derivations in the passage, and
- syntactic similarity between the question and the passage, and
- WordNet \textit{is-a} relation between terms in the question and the passage

That is, if a passage is morphologically and syntactically similar to a question, the answer candidate from the passage gets a higher confidence score.

The highest ranked answer candidate is selected as an answer for the factoid question, while answer candidates which have higher scores than an empirically determined threshold value are chosen for the list questions.

3 Other Questions

Figure 2 shows the overview of our definition question answering system developed for the other questions. Our system extracts answer candidates consisting of noun and verb phrases related to the question target, ranks the candidates using several evidences, and returns \(n\) top-ranked candidates whose scores are higher than a pre-defined threshold.

3.1 Question Analysis

Contrary to the factoid and list questions, other questions do not have an expected answer type such as a location or a person name. In the question analysis phase for the definition questions, the head word of the target is extracted, the target type is identified, and a query for the passage retrieval engine is generated. In order to identify the head word, we syntactically parsed the question target using the Conexor FDG parser. This head word is used for a query for sentence retrieval. We have performed named entity tagging to the question target, and classified the target using the named entity of the target head word into one of three target types: person, organization, and other. The query generation method will be explained in more detail in the next section.

\(^1\)For example, \textit{Which continent is India in?} or \textit{Who is a mayor of San Francisco?}
3.2 Passage Retrieval

In order to answer the question, we have to retrieve relevant information to the question target in the passage retrieval phase. Because the target tends to be used with different expression in documents from that in the question, a lot of relevant information could not be retrieved or lots of irrelevant information would be retrieved by one phase passage retrieval. For example, for a target Bill Clinton, it would be expressed in a text by Clinton, president Clinton, he, etc. A strict phrase query bill clinton would suffer from low recall because of differently-represented phrases in documents, while a relaxed query clinton would be overloaded by a plenty of irrelevant information such as George Clinton.

Therefore, our passage retrieval engine consists of two phases: document retrieval phase and sentence retrieval phase. Our intention is that we firstly retrieve only relevant documents to the target by relatively strict query, and then extract relevant sentences by using more relaxed query. The query for the document retrieval consists of the words and phrases of the target filtered with a stopword list. The phrase is used for a sequence of words with an initial capital letter, and the word itself is used otherwise. For example, for a target Bill Clinton, a phrase bill clinton is used as the query, and for a target Berkman Center for Internet and Society, the query would include a phrase berkman center and two words internet and society.

For the sentence retrieval, only the head word of the target is used as the query. In other words, sentences containing the head word are extracted from the retrieved documents. Sentences in which the head word is represented as an anaphora are also extracted by using simple rules. We observed that an anaphora refers to the target if
the anaphora is used as a subject and the target is also used as a subject in the previous sentence. As shown in the following example, he in the sentence (b) refers to Clinton in the sentence (a), so both sentences are extracted.

(a) Former president Bill Clinton was born in Hope, Arkansas.
(b) He was named William Jefferson Blythe IV after his father, William Jefferson Blythe III.

3.3 Answer Candidate Extraction
For generating a more fine-grained answer, phrases are extracted from the retrieved sentences by using the syntactic dependency relations. In order to identify the syntactic relations, we also syntactically parsed the retrieved sentences using the Conexor FDG parser. Each noun phrase is extracted when it modifies the target syntactically, while each verb phrase is extracted when the target is the subject of the sentence and modifies the verb phrase syntactically. When the verb phrase is included in a relative pronoun clause, it is extracted only if the relative pronoun is a subject of the clause. In the above example, the following phrases would be extracted:

- Former president
- born in Hope, Arkansas
- named William Jefferson Blythe IV after his father, William Jefferson Blythe III

3.4 Redundancy Elimination
We also eliminated redundant information among the candidates, the extracted noun and verb phrases, based on word overlap and the semantic class of the main head word in WordNet. If two candidates share 70% or more words, the lowerly-ranked candidate is eliminated. If the word overlap does not amount to 30%, the two candidates are determined to be nonredundant. Otherwise, the semantic class of the main head word is checked. If each main head word of the two candidates is contained in a synset in WordNet, the two candidates are determined to be redundant, and the lowerly-ranked one is eliminated.

3.5 Answer Selection
Our system used several evidences to rank answer candidates: head word redundancy, term statistics in the relevant passages, and the biographical term weight. We have selected final answers up to 24 candidates. The highly-ranked answer candidates having a higher score than pre-defined threshold were included into the final answer.
3.5.1 Head Word Redundancy

The important facts or events are usually mentioned repeatedly, and the head word is the core of each answer candidate. Therefore, we consider the redundancy of head word of answer candidate \(a \) by using the following formula.

\[
\text{rdd}(a) = \begin{cases} \frac{r}{|C_n|} & \text{if } a \text{ is noun phrase} \\ \frac{r}{|C_v|} & \text{if } a \text{ is verb phrase} \end{cases}
\]

where \(r \) represents the number of the retrieved sentences in which the head word of the answer candidate \(a \) is used as a head word, \(|C_n| \) is the total number of answer candidates as a noun phrase, and \(|C_v| \) is the total number of answer candidates as a verb phrase. The eliminated candidates in the redundancy elimination phase also contribute to the calculation of the values.

3.5.2 Local Term Statistics

In addition to the head word, the frequent words in the retrieved passages are important. The \(\text{loc}(a) \) presents a local weight based on the term statistics in the retrieved sentences, and is calculated as follows:

\[
\text{loc}(a) = \sum_{t_i \in a} \frac{\text{weight}_{loc}(t_i)}{|a|} = \sum_{t_i \in a} \frac{s_f}{\text{max } s_f}
\]

where \(s_f \) is the number of sentences in which the term \(t_i \) is occurred, \(\text{max } s_f \) is the maximum value of \(s_f \) among all terms, and \(|a| \) is the number of all content words in the answer candidate \(a \).

3.5.3 Biographical Term Weight

The biographical term weight is calculated only for the person target. The documents in an encyclopedia describe whole life of a person including personal identity and events. In other words, the encyclopedia can be a good training data for learning about the biographical definition.

The probability that a term occurs in the encyclopedia can be used for the term importance measure. The idea is that the more frequent word in the encyclopedia will be more important in the biographical definition.

\[
\text{weight}_{p}(t) = p_{ency}(t) = \frac{t_f}{T}
\]

where \(t_f \) is the term frequency in the encyclopedia, and \(T \) is the total occurrences of all terms.

In addition to the encyclopedia, we also utilized a general text. The term probability ratio assigns the high weight to the term occurring much more frequently in the encyclopedia than in the general text by using the following formula:

\[
\text{weight}_{p\text{ratio}}(t) = \frac{p_{ency}(t)}{p_{gen}(t)}
\]
It is similar to the TextMap[4].

The biographical term weight is calculated using the above weights as follows:

\[
bi\omega_1(\alpha) = \begin{cases}
\frac{\sum_{t_i \in a} \log_{10}(weight_p(t_i) \times weight_{pratio}(t_i) + 1)}{|a|} & \text{if \(\alpha\) is noun phrase} \\
\frac{\sum_{t_i \in a} \log_{10}(weight_p(t_i) + 1)}{|a|} & \text{if \(\alpha\) is verb phrase}
\end{cases}
\]

\[
bi\omega_2(\alpha) = \frac{\sum_{t_i \in a} weight_p(t_i)}{|a|}
\]

Refer to the [5] for more detail comparison between these weights.

Our system KUQA1 and KUQA2 use the weights \(bi\omega_1(\alpha)\) and \(bi\omega_2(\alpha)\) respectively. KUQA3 does not use this biographical term weight.

3.5.4 Combination

The evidence mentioned so far is combined with linear interpolation.

\[
score(\alpha) = \alpha \times rdd(\alpha) + \beta \times loc(\alpha) + \gamma \times bio(\alpha)
\]

where \(\alpha, \beta, \gamma\) are tuning parameters satisfying \(\alpha + \beta + \gamma = 1\), and are determined empirically.

The answer candidates whose score is higher than a threshold are returned as final answers. In order to eliminate the nuggets redundant to the factoid and list questions, we calculate a redundancy by content word overlap. If an answer candidate overlaps with previous questions (e.g. factoid and list questions) more than 65% or with previous answers (e.g. answers for the factoid and list questions) more than 60%, then the answer candidates are not selected as final answers.

4 Evaluation

We have submitted three runs: KUQA1, KUQA2, and KUQA3. For the factoid questions, KUQA1 is the result by using dependence information, while KUQA2 and KUQA3 are not.

For other questions, we used a public online encyclopedia, the Columbia Encyclopedia\(^2\). A part of AQUAINT corpus is used for the general text. It consists of 5,268 APW articles in July 2000, 12,843 NYT ones in March 1999, and 9,727 XIE ones in December 1998.

As shown in Table 2, we can conclude that dependence information is very useful to find an answer. Since the performances for the list questions are superior to the median performance, we can also claim that our proximity-based ranking strategy is quite effective.

Table 2: Summary of the performances

<table>
<thead>
<tr>
<th>Run</th>
<th>factoid</th>
<th>list</th>
<th>other</th>
<th>final</th>
</tr>
</thead>
<tbody>
<tr>
<td>KUQA1</td>
<td>0.222</td>
<td>0.159</td>
<td>0.246</td>
<td>0.212</td>
</tr>
<tr>
<td>KUQA2</td>
<td>0.187</td>
<td>0.157</td>
<td>0.229</td>
<td>0.190</td>
</tr>
<tr>
<td>KUQA3</td>
<td>0.187</td>
<td>0.157</td>
<td>0.247</td>
<td>0.195</td>
</tr>
<tr>
<td>Median</td>
<td>0.170</td>
<td>0.094</td>
<td>0.184</td>
<td></td>
</tr>
</tbody>
</table>

For other questions, KUQA1 and KUQA2 used the biographical term weight, $\text{bi(o}_1(\alpha) \text{)}$ and $\text{bi(o}_2(\alpha) \text{)}$ respectively, based on the encyclopedia, and KUQA3 does not used the biographical term weight. It seems that $\text{bi(o}_2(\alpha) \text{)}$ is not appropriate for the biographical term weight because it cannot properly normalize the score. Unexpectedly, the results show that the system KUQA1 using the encyclopedia does not outperform the system KUQA3 not using it. By analyzing the TREC evaluation results, the matching decision between KUQA1 and KUQA3 was not consistent; nuggets regarded to be matched in KUQA3 were not regarded to be matched in KUQA1. KUQA1 seems to be evaluated more strictly than KUQA3. Table 3 shows the characteristics for the two systems. In spite of the inconsistent matching decision, KUQA1 using the encyclopedia information can achieve higher precision at little cost of recall with shorter answer than KUQA3.

Table 3: Comparison between our systems for other questions

<table>
<thead>
<tr>
<th>Run</th>
<th>recall</th>
<th>precision</th>
<th>length</th>
</tr>
</thead>
<tbody>
<tr>
<td>KUQA1</td>
<td>0.261</td>
<td>0.279</td>
<td>649.15</td>
</tr>
<tr>
<td>KUQA3</td>
<td>0.262</td>
<td>0.271</td>
<td>666.34</td>
</tr>
</tbody>
</table>

5 Conclusions

We have presented an overview of our QA system for TREC 2004. Our QA system used the dependency information for all questions, and the results imply that the dependency information is useful for answer selection. Moreover, the encyclopedia was helpful to select proper answer for other questions.

References

